2018-10-11 00:25:40 +03:00
|
|
|
// Copyright 2018 Joshua J Baker. All rights reserved.
|
|
|
|
// Use of this source code is governed by an MIT-style
|
|
|
|
// license that can be found in the LICENSE file.
|
|
|
|
|
|
|
|
package geometry
|
|
|
|
|
|
|
|
import (
|
|
|
|
"math"
|
|
|
|
)
|
|
|
|
|
|
|
|
const complexRingMinPoints = 16
|
|
|
|
|
|
|
|
// Ring ...
|
|
|
|
type Ring = Series
|
|
|
|
|
2018-10-22 05:08:56 +03:00
|
|
|
func newRing(points []Point, opts *IndexOptions) Ring {
|
|
|
|
series := makeSeries(points, true, true, opts)
|
2018-10-11 00:25:40 +03:00
|
|
|
return &series
|
|
|
|
}
|
|
|
|
|
|
|
|
type ringResult struct {
|
|
|
|
hit bool // contains/intersects
|
|
|
|
idx int // edge index
|
|
|
|
}
|
|
|
|
|
|
|
|
func ringContainsPoint(ring Ring, point Point, allowOnEdge bool) ringResult {
|
|
|
|
// println("A")
|
|
|
|
var idx = -1
|
|
|
|
// find all intersecting segments on the y-axis
|
|
|
|
var in bool
|
|
|
|
ring.Search(
|
|
|
|
Rect{Point{math.Inf(-1), point.Y}, Point{math.Inf(+1), point.Y}},
|
|
|
|
func(seg Segment, index int) bool {
|
|
|
|
// fmt.Printf("%v %v\n", point, seg)
|
|
|
|
// perform a raycast operation on the segments
|
|
|
|
res := seg.Raycast(point)
|
|
|
|
if res.On {
|
|
|
|
// println(1)
|
|
|
|
in = allowOnEdge
|
|
|
|
idx = index
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
if res.In {
|
|
|
|
// println(2)
|
|
|
|
in = !in
|
|
|
|
}
|
|
|
|
return true
|
|
|
|
},
|
|
|
|
)
|
|
|
|
return ringResult{hit: in, idx: idx}
|
|
|
|
}
|
|
|
|
|
|
|
|
func ringIntersectsPoint(ring Ring, point Point, allowOnEdge bool) ringResult {
|
|
|
|
return ringContainsPoint(ring, point, allowOnEdge)
|
|
|
|
}
|
|
|
|
|
|
|
|
// func segmentsIntersects(seg, other Segment, allowOnEdge bool) bool {
|
|
|
|
// if seg.IntersectsSegment(other) {
|
|
|
|
|
|
|
|
// }
|
|
|
|
// return false
|
|
|
|
// }
|
|
|
|
|
|
|
|
func ringContainsSegment(ring Ring, seg Segment, allowOnEdge bool) bool {
|
|
|
|
// fmt.Printf("%v %v\n", seg.A, seg.B)
|
|
|
|
// Test that segment points are contained in the ring.
|
|
|
|
resA := ringContainsPoint(ring, seg.A, allowOnEdge)
|
|
|
|
if !resA.hit {
|
|
|
|
// seg A is not inside ring
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
if seg.B == seg.A {
|
|
|
|
return true
|
|
|
|
}
|
|
|
|
resB := ringContainsPoint(ring, seg.B, allowOnEdge)
|
|
|
|
if !resB.hit {
|
|
|
|
// seg B is not inside ring
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
if ring.Convex() {
|
|
|
|
// ring is convex so the segment must be contained
|
|
|
|
return true
|
|
|
|
}
|
|
|
|
|
|
|
|
// The ring is concave so it's possible that the segment crosses over the
|
|
|
|
// edge of the ring.
|
|
|
|
if allowOnEdge {
|
|
|
|
// do some logic around seg points that are on the edge of the ring.
|
|
|
|
if resA.idx != -1 {
|
|
|
|
// seg A is on a ring segment
|
|
|
|
if resB.idx != -1 {
|
|
|
|
// seg B is on a ring segment
|
|
|
|
if resB.idx == resA.idx {
|
|
|
|
// case (3)
|
|
|
|
// seg A and B share the same ring segment, so it must be
|
|
|
|
// on the inside.
|
|
|
|
return true
|
|
|
|
}
|
|
|
|
// case (1)
|
|
|
|
// seg A and seg B are on different segments.
|
|
|
|
// determine if the space that the seg passes over is inside or
|
|
|
|
// outside of the ring. To do so we create a ring from the two
|
|
|
|
// ring segments and check if that ring winding order matches
|
|
|
|
// the winding order of the ring.
|
|
|
|
// -- create a ring
|
|
|
|
|
|
|
|
rSegA := ring.SegmentAt(resA.idx)
|
|
|
|
rSegB := ring.SegmentAt(resB.idx)
|
|
|
|
if rSegA.A == seg.A || rSegA.B == seg.A ||
|
|
|
|
rSegB.A == seg.A || rSegB.B == seg.A ||
|
|
|
|
rSegA.A == seg.B || rSegA.B == seg.B ||
|
|
|
|
rSegB.A == seg.B || rSegB.B == seg.B {
|
|
|
|
return true
|
|
|
|
}
|
|
|
|
|
|
|
|
// fix the order of the
|
|
|
|
if resB.idx < resA.idx {
|
|
|
|
rSegA, rSegB = rSegB, rSegA
|
|
|
|
}
|
|
|
|
|
|
|
|
pts := [5]Point{rSegA.A, rSegA.B, rSegB.A, rSegB.B, rSegA.A}
|
|
|
|
// -- calc winding order
|
|
|
|
var cwc float64
|
|
|
|
for i := 0; i < len(pts)-1; i++ {
|
|
|
|
a, b := pts[i], pts[i+1]
|
|
|
|
cwc += (b.X - a.X) * (b.Y + a.Y)
|
|
|
|
}
|
|
|
|
clockwise := cwc > 0
|
|
|
|
if clockwise != ring.Clockwise() {
|
|
|
|
// -- on the outside
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
// the passover space is on the inside of the ring.
|
|
|
|
// check if seg intersects any ring segments where A and B are
|
|
|
|
// not on.
|
|
|
|
var intersects bool
|
|
|
|
ring.Search(seg.Rect(), func(seg2 Segment, index int) bool {
|
|
|
|
if seg.IntersectsSegment(seg2) {
|
|
|
|
if !seg2.Raycast(seg.A).On && !seg2.Raycast(seg.B).On {
|
|
|
|
intersects = true
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return true
|
|
|
|
})
|
|
|
|
return !intersects
|
|
|
|
}
|
|
|
|
// case (4)
|
|
|
|
// seg A is on a ring segment, but seg B is not.
|
|
|
|
// check if seg intersects any ring segments where A is not on.
|
|
|
|
var intersects bool
|
|
|
|
ring.Search(seg.Rect(), func(seg2 Segment, index int) bool {
|
|
|
|
if seg.IntersectsSegment(seg2) {
|
|
|
|
if !seg2.Raycast(seg.A).On {
|
|
|
|
intersects = true
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return true
|
|
|
|
})
|
|
|
|
return !intersects
|
|
|
|
} else if resB.idx != -1 {
|
|
|
|
// case (2)
|
|
|
|
// seg B is on a ring segment, but seg A is not.
|
|
|
|
// check if seg intersects any ring segments where B is not on.
|
|
|
|
var intersects bool
|
|
|
|
ring.Search(seg.Rect(), func(seg2 Segment, index int) bool {
|
|
|
|
if seg.IntersectsSegment(seg2) {
|
|
|
|
if !seg2.Raycast(seg.B).On {
|
|
|
|
intersects = true
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return true
|
|
|
|
})
|
|
|
|
return !intersects
|
|
|
|
}
|
|
|
|
// case (5) (15)
|
|
|
|
var intersects bool
|
|
|
|
ring.Search(seg.Rect(), func(seg2 Segment, index int) bool {
|
|
|
|
if seg.IntersectsSegment(seg2) {
|
|
|
|
if !seg.Raycast(seg2.A).On && !seg.Raycast(seg2.B).On {
|
|
|
|
intersects = true
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return true
|
|
|
|
})
|
|
|
|
return !intersects
|
|
|
|
}
|
|
|
|
|
|
|
|
// allowOnEdge is false. (not allow on edge)
|
|
|
|
var intersects bool
|
|
|
|
ring.Search(seg.Rect(), func(seg2 Segment, index int) bool {
|
|
|
|
if seg.IntersectsSegment(seg2) {
|
|
|
|
// if seg.Raycast(seg2.A).On || seg.Raycast(seg2.B).On {
|
|
|
|
intersects = true
|
|
|
|
// return false
|
|
|
|
// }
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
return true
|
|
|
|
})
|
|
|
|
return !intersects
|
|
|
|
}
|
|
|
|
|
|
|
|
// ringIntersectsSegment detect if the segment intersects the ring
|
|
|
|
func ringIntersectsSegment(ring Ring, seg Segment, allowOnEdge bool) bool {
|
|
|
|
// Quick check that either point is inside of the ring
|
|
|
|
if ringContainsPoint(ring, seg.A, allowOnEdge).hit {
|
|
|
|
return true
|
|
|
|
}
|
|
|
|
if ringContainsPoint(ring, seg.B, allowOnEdge).hit {
|
|
|
|
return true
|
|
|
|
}
|
|
|
|
// Neither point A or B is inside the the ring. It's possible that both
|
|
|
|
// are on the outside and are passing over segments. If the segment passes
|
|
|
|
// over at least two ring segments then it's intersecting.
|
|
|
|
var count int
|
|
|
|
var segAOn bool
|
|
|
|
var segBOn bool
|
|
|
|
ring.Search(seg.Rect(), func(seg2 Segment, index int) bool {
|
|
|
|
if seg.IntersectsSegment(seg2) {
|
|
|
|
if !allowOnEdge {
|
|
|
|
// for segments that are not allowed on the edge, extra care
|
|
|
|
// must be taken.
|
|
|
|
if !(seg.CollinearPoint(seg2.A) && seg.CollinearPoint(seg2.B)) {
|
|
|
|
if !segAOn {
|
|
|
|
if seg.A == seg2.A || seg.A == seg2.B {
|
|
|
|
segAOn = true
|
|
|
|
return true
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if !segBOn {
|
|
|
|
if seg.B == seg2.A || seg.B == seg2.B {
|
|
|
|
segBOn = true
|
|
|
|
return true
|
|
|
|
}
|
|
|
|
}
|
|
|
|
count++
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
count++
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return count < 2
|
|
|
|
})
|
|
|
|
return count >= 2
|
|
|
|
}
|
|
|
|
|
|
|
|
func ringContainsRing(ring, other Ring, allowOnEdge bool) bool {
|
|
|
|
if ring.Empty() || other.Empty() {
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
if other.NumPoints() >= complexRingMinPoints {
|
|
|
|
// inner ring has a lot of points, and is convex, so let just check if
|
|
|
|
// the rect ring is fully contained before we do the complicated stuff.
|
|
|
|
if ringContainsRing(ring, other.Rect(), allowOnEdge) {
|
|
|
|
return true
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// test if the inner rect does not contain the outer rect
|
|
|
|
if !ring.Rect().ContainsRect(other.Rect()) {
|
|
|
|
// not contained so it's not possible for the outer ring to contain
|
|
|
|
// the inner ring
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
if ring.Convex() {
|
|
|
|
// outer ring is convex so test that all inner points are inside of
|
|
|
|
// the outer ring
|
|
|
|
otherNumPoints := other.NumPoints()
|
|
|
|
for i := 0; i < otherNumPoints; i++ {
|
|
|
|
if !ringContainsPoint(ring, other.PointAt(i), allowOnEdge).hit {
|
|
|
|
// point is on the outside the outer ring
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// outer ring is concave so let's make sure that all inner segments are
|
|
|
|
// fully contained inside of the outer ring.
|
|
|
|
otherNumSegments := other.NumSegments()
|
|
|
|
for i := 0; i < otherNumSegments; i++ {
|
|
|
|
if !ringContainsSegment(ring, other.SegmentAt(i), allowOnEdge) {
|
|
|
|
// fmt.Printf("%v %v\n", ring, other.SegmentAt(i))
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return true
|
|
|
|
}
|
|
|
|
|
|
|
|
func ringIntersectsRing(ring, other Ring, allowOnEdge bool) bool {
|
|
|
|
if ring.Empty() || other.Empty() {
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
// check outer and innter rects intersection first
|
|
|
|
if !ring.Rect().IntersectsRect(other.Rect()) {
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
if other.Rect().Area() > ring.Rect().Area() {
|
|
|
|
// swap the rings so that the inner ring is smaller than the outer ring
|
|
|
|
ring, other = other, ring
|
|
|
|
}
|
|
|
|
if ring.Convex() && allowOnEdge {
|
|
|
|
// outer ring is convex so test that any inner points are inside of
|
|
|
|
// the outer ring
|
|
|
|
otherNumPoints := other.NumPoints()
|
|
|
|
for i := 0; i < otherNumPoints; i++ {
|
|
|
|
if ringContainsPoint(ring, other.PointAt(i), allowOnEdge).hit {
|
|
|
|
return true
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// outer ring is concave so let's make sure that all inner segments are
|
|
|
|
// fully contained inside of the outer ring.
|
|
|
|
otherNumSegments := other.NumSegments()
|
|
|
|
for i := 0; i < otherNumSegments; i++ {
|
|
|
|
if ringIntersectsSegment(ring, other.SegmentAt(i), allowOnEdge) {
|
|
|
|
return true
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
|
|
|
|
func ringContainsLine(ring Ring, line *Line, allowOnEdge bool) bool {
|
|
|
|
// shares the same logic
|
|
|
|
return ringContainsRing(ring, Ring(&line.baseSeries), allowOnEdge)
|
|
|
|
}
|
|
|
|
|
|
|
|
func ringIntersectsLine(ring Ring, line *Line, allowOnEdge bool) bool {
|
|
|
|
if ring.Empty() || line.Empty() {
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
// check outer and innter rects intersection first
|
|
|
|
if !ring.Rect().IntersectsRect(line.Rect()) {
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
// check if any points are inside ring
|
|
|
|
lineNumPoints := line.NumPoints()
|
|
|
|
for i := 0; i < lineNumPoints; i++ {
|
|
|
|
if ringContainsPoint(ring, line.PointAt(i), allowOnEdge).hit {
|
|
|
|
return true
|
|
|
|
}
|
|
|
|
}
|
|
|
|
lineNumSegments := line.NumSegments()
|
|
|
|
for i := 0; i < lineNumSegments; i++ {
|
|
|
|
if ringIntersectsSegment(ring, line.SegmentAt(i), allowOnEdge) {
|
|
|
|
return true
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false
|
|
|
|
}
|