tile38/vendor/github.com/tidwall/rhh/u64_test.go

299 lines
6.7 KiB
Go
Raw Normal View History

Fix excessive memory usage for objects with TTLs This commit fixes an issue where Tile38 was using lots of extra memory to track objects that are marked to expire. This was creating problems with applications that set big TTLs. How it worked before: Every collection had a unique hashmap that stores expiration timestamps for every object in that collection. Along with the hashmaps, there's also one big server-wide list that gets appended every time a new SET+EX is performed. From a background routine, this list is looped over at least 10 times per second and is randomly searched for potential candidates that might need expiring. The routine then removes those entries from the list and tests if the objects matching the entries have actually expired. If so, these objects are deleted them from the database. When at least 25% of the 20 candidates are deleted the loop is immediately continued, otherwise the loop backs off with a 100ms pause. Why this was a problem. The list grows one entry for every SET+EX. When TTLs are long, like 24-hours or more, it would take at least that much time before the entry is removed. So for databased that have objects that use TTLs and are updated often this could lead to a very large list. How it was fixed. The list was removed and the hashmap is now search randomly. This required a new hashmap implementation, as the built-in Go map does not provide an operation for randomly geting entries. The chosen implementation is a robinhood-hash because it provides open-addressing, which makes for simple random bucket selections. Issue #502
2019-10-29 21:04:07 +03:00
// Copyright 2019 Joshua J Baker. All rights reserved.
// Use of this source code is governed by an ISC-style
// license that can be found in the LICENSE file.
package rhh
import (
"fmt"
"math/rand"
"os"
"runtime"
"strconv"
"testing"
"time"
"github.com/tidwall/lotsa"
)
type keyTU64 = uint64
type valueTU64 = interface{}
func kU64(key int) keyTU64 {
return uint64(key)
}
func addU64(x keyTU64, delta int) int {
return int(x) + delta
}
///////////////////////////
func randomU64(N int, perm bool) []keyTU64 {
nums := make([]keyTU64, N)
if perm {
for i, x := range rand.Perm(N) {
nums[i] = kU64(x)
}
} else {
m := make(map[keyTU64]bool)
for len(m) < N {
m[kU64(int(rand.Uint64()))] = true
}
var i int
for k := range m {
nums[i] = k
i++
}
}
return nums
}
func shuffleU64(nums []keyTU64) {
for i := range nums {
j := rand.Intn(i + 1)
nums[i], nums[j] = nums[j], nums[i]
}
}
func init() {
//var seed int64 = 1519776033517775607
seed := (time.Now().UnixNano())
println("seed:", seed)
rand.Seed(seed)
}
func TestRandomDataU64(t *testing.T) {
N := 10000
start := time.Now()
for time.Since(start) < time.Second*2 {
nums := randomU64(N, true)
var m *MapU64
switch rand.Int() % 5 {
default:
m = NewU64(N / ((rand.Int() % 3) + 1))
case 1:
m = new(MapU64)
case 2:
m = NewU64(0)
}
v, ok := m.Get(kU64(999))
if ok || v != nil {
t.Fatalf("expected %v, got %v", nil, v)
}
v, ok = m.Delete(kU64(999))
if ok || v != nil {
t.Fatalf("expected %v, got %v", nil, v)
}
if m.Len() != 0 {
t.Fatalf("expected %v, got %v", 0, m.Len())
}
// set a bunch of items
for i := 0; i < len(nums); i++ {
v, ok := m.Set(nums[i], nums[i])
if ok || v != nil {
t.Fatalf("expected %v, got %v", nil, v)
}
}
if m.Len() != N {
t.Fatalf("expected %v, got %v", N, m.Len())
}
// retrieve all the items
shuffleU64(nums)
for i := 0; i < len(nums); i++ {
v, ok := m.Get(nums[i])
if !ok || v == nil || v != nums[i] {
t.Fatalf("expected %v, got %v", nums[i], v)
}
}
// replace all the items
shuffleU64(nums)
for i := 0; i < len(nums); i++ {
v, ok := m.Set(nums[i], addU64(nums[i], 1))
if !ok || v != nums[i] {
t.Fatalf("expected %v, got %v", nums[i], v)
}
}
if m.Len() != N {
t.Fatalf("expected %v, got %v", N, m.Len())
}
// retrieve all the items
shuffleU64(nums)
for i := 0; i < len(nums); i++ {
v, ok := m.Get(nums[i])
if !ok || v != addU64(nums[i], 1) {
t.Fatalf("expected %v, got %v", addU64(nums[i], 1), v)
}
}
// remove half the items
shuffleU64(nums)
for i := 0; i < len(nums)/2; i++ {
v, ok := m.Delete(nums[i])
if !ok || v != addU64(nums[i], 1) {
t.Fatalf("expected %v, got %v", addU64(nums[i], 1), v)
}
}
if m.Len() != N/2 {
t.Fatalf("expected %v, got %v", N/2, m.Len())
}
// check to make sure that the items have been removed
for i := 0; i < len(nums)/2; i++ {
v, ok := m.Get(nums[i])
if ok || v != nil {
t.Fatalf("expected %v, got %v", nil, v)
}
}
// check the second half of the items
for i := len(nums) / 2; i < len(nums); i++ {
v, ok := m.Get(nums[i])
if !ok || v != addU64(nums[i], 1) {
t.Fatalf("expected %v, got %v", addU64(nums[i], 1), v)
}
}
// try to delete again, make sure they don't exist
for i := 0; i < len(nums)/2; i++ {
v, ok := m.Delete(nums[i])
if ok || v != nil {
t.Fatalf("expected %v, got %v", nil, v)
}
}
if m.Len() != N/2 {
t.Fatalf("expected %v, got %v", N/2, m.Len())
}
m.Range(func(key keyTU64, value valueTU64) bool {
if value != addU64(key, 1) {
t.Fatalf("expected %v, got %v", addU64(key, 1), value)
}
return true
})
var n int
m.Range(func(key keyTU64, value valueTU64) bool {
n++
return false
})
if n != 1 {
t.Fatalf("expected %v, got %v", 1, n)
}
for i := len(nums) / 2; i < len(nums); i++ {
v, ok := m.Delete(nums[i])
if !ok || v != addU64(nums[i], 1) {
t.Fatalf("expected %v, got %v", addU64(nums[i], 1), v)
}
}
}
}
func TestBenchU64(t *testing.T) {
N, _ := strconv.ParseUint(os.Getenv("MAPBENCH"), 10, 64)
if N == 0 {
fmt.Printf("Enable benchmarks with MAPBENCH=1000000\n")
return
}
nums := randomU64(int(N), false)
var pnums []valueTU64
for i := range nums {
pnums = append(pnums, valueTU64(&nums[i]))
}
fmt.Printf("\n## UINT64 KEYS\n\n")
t.Run("RobinHood", func(t *testing.T) {
testPerfU64(nums, pnums, "robinhood")
})
t.Run("Stdlib", func(t *testing.T) {
testPerfU64(nums, pnums, "stdlib")
})
}
func testPerfU64(nums []keyTU64, pnums []valueTU64, which string) {
var ms1, ms2 runtime.MemStats
initSize := 0 //len(nums) * 2
defer func() {
heapBytes := int(ms2.HeapAlloc - ms1.HeapAlloc)
fmt.Printf("memory %13s bytes %19s/entry \n",
commaize(heapBytes), commaize(heapBytes/len(nums)))
fmt.Printf("\n")
}()
runtime.GC()
time.Sleep(time.Millisecond * 100)
runtime.ReadMemStats(&ms1)
var setop, getop, delop func(int, int)
var scnop func()
switch which {
case "stdlib":
m := make(map[keyTU64]valueTU64, initSize)
setop = func(i, _ int) { m[nums[i]] = pnums[i] }
getop = func(i, _ int) { _ = m[nums[i]] }
delop = func(i, _ int) { delete(m, nums[i]) }
scnop = func() {
for range m {
}
}
case "robinhood":
m := NewU64(initSize)
setop = func(i, _ int) { m.Set(nums[i], pnums[i]) }
getop = func(i, _ int) { m.Get(nums[i]) }
delop = func(i, _ int) { m.Delete(nums[i]) }
scnop = func() {
m.Range(func(key keyTU64, value valueTU64) bool {
return true
})
}
}
fmt.Printf("-- %s --", which)
fmt.Printf("\n")
ops := []func(int, int){setop, getop, setop, nil, delop}
tags := []string{"set", "get", "reset", "scan", "delete"}
for i := range ops {
shuffleU64(nums)
var na bool
var n int
start := time.Now()
if tags[i] == "scan" {
op := scnop
if op == nil {
na = true
} else {
n = 20
lotsa.Ops(n, 1, func(_, _ int) { op() })
}
} else {
n = len(nums)
lotsa.Ops(n, 1, ops[i])
}
dur := time.Since(start)
if i == 0 {
runtime.GC()
time.Sleep(time.Millisecond * 100)
runtime.ReadMemStats(&ms2)
}
printItem(tags[i], 9, -1)
if na {
printItem("-- unavailable --", 14, 1)
} else {
if n == -1 {
printItem("unknown ops", 14, 1)
} else {
printItem(fmt.Sprintf("%s ops", commaize(n)), 14, 1)
}
printItem(fmt.Sprintf("%.0fms", dur.Seconds()*1000), 8, 1)
if n != -1 {
printItem(fmt.Sprintf("%s/sec", commaize(int(float64(n)/dur.Seconds()))), 18, 1)
}
}
fmt.Printf("\n")
}
}
func TestHashDIBU64(t *testing.T) {
var e entryU64
e.setDIB(100)
e.setHash(90000)
if e.dib() != 100 {
t.Fatalf("expected %v, got %v", 100, e.dib())
}
if e.hash() != 90000 {
t.Fatalf("expected %v, got %v", 90000, e.hash())
}
}