tile38/vendor/github.com/tidwall/rhh/u64.go

186 lines
4.2 KiB
Go
Raw Normal View History

Fix excessive memory usage for objects with TTLs This commit fixes an issue where Tile38 was using lots of extra memory to track objects that are marked to expire. This was creating problems with applications that set big TTLs. How it worked before: Every collection had a unique hashmap that stores expiration timestamps for every object in that collection. Along with the hashmaps, there's also one big server-wide list that gets appended every time a new SET+EX is performed. From a background routine, this list is looped over at least 10 times per second and is randomly searched for potential candidates that might need expiring. The routine then removes those entries from the list and tests if the objects matching the entries have actually expired. If so, these objects are deleted them from the database. When at least 25% of the 20 candidates are deleted the loop is immediately continued, otherwise the loop backs off with a 100ms pause. Why this was a problem. The list grows one entry for every SET+EX. When TTLs are long, like 24-hours or more, it would take at least that much time before the entry is removed. So for databased that have objects that use TTLs and are updated often this could lead to a very large list. How it was fixed. The list was removed and the hashmap is now search randomly. This required a new hashmap implementation, as the built-in Go map does not provide an operation for randomly geting entries. The chosen implementation is a robinhood-hash because it provides open-addressing, which makes for simple random bucket selections. Issue #502
2019-10-29 21:04:07 +03:00
// Copyright 2019 Joshua J Baker. All rights reserved.
// Use of this source code is governed by an ISC-style
// license that can be found in the LICENSE file.
package rhh
import (
"reflect"
"unsafe"
"github.com/cespare/xxhash"
)
type entryU64 struct {
hdib uint64 // bitfield { hash:48 dib:16 }
key uint64 // user key
value interface{} // user value
}
func (e *entryU64) dib() int {
return int(e.hdib & maxDIB)
}
func (e *entryU64) hash() int {
return int(e.hdib >> dibBitSize)
}
func (e *entryU64) setDIB(dib int) {
e.hdib = e.hdib>>dibBitSize<<dibBitSize | uint64(dib)&maxDIB
}
func (e *entryU64) setHash(hash int) {
e.hdib = uint64(hash)<<dibBitSize | e.hdib&maxDIB
}
// hash returns a 48-bit hash for 64-bit environments, or 32-bit hash for
// 32-bit environments.
func (m *MapU64) hash(key uint64) int {
return int(xxhash.Sum64(*(*[]byte)(unsafe.Pointer(&reflect.SliceHeader{
Data: uintptr(unsafe.Pointer(&key)), Len: 8, Cap: 8,
}))) >> dibBitSize)
}
// MapU64 is a map. Like map[uint64]interface{}
type MapU64 struct {
cap int
length int
mask int
growAt int
shrinkAt int
buckets []entryU64
}
// NewU64 returns a new map. Like map[uint64]interface{}
func NewU64(cap int) *MapU64 {
m := new(MapU64)
m.cap = cap
sz := 8
for sz < m.cap {
sz *= 2
}
m.buckets = make([]entryU64, sz)
m.mask = len(m.buckets) - 1
m.growAt = int(float64(len(m.buckets)) * loadFactor)
m.shrinkAt = int(float64(len(m.buckets)) * (1 - loadFactor))
return m
}
func (m *MapU64) resize(newCap int) {
nmap := NewU64(newCap)
for i := 0; i < len(m.buckets); i++ {
if m.buckets[i].dib() > 0 {
nmap.set(m.buckets[i].hash(), m.buckets[i].key, m.buckets[i].value)
}
}
cap := m.cap
*m = *nmap
m.cap = cap
}
// Set assigns a value to a key.
// Returns the previous value, or false when no value was assigned.
func (m *MapU64) Set(key uint64, value interface{}) (interface{}, bool) {
if len(m.buckets) == 0 {
*m = *NewU64(0)
}
if m.length >= m.growAt {
m.resize(len(m.buckets) * 2)
}
return m.set(m.hash(key), key, value)
}
func (m *MapU64) set(hash int, key uint64, value interface{}) (interface{}, bool) {
e := entryU64{makeHDIB(hash, 1), key, value}
i := e.hash() & m.mask
for {
if m.buckets[i].dib() == 0 {
m.buckets[i] = e
m.length++
return nil, false
}
if e.hash() == m.buckets[i].hash() && e.key == m.buckets[i].key {
old := m.buckets[i].value
m.buckets[i].value = e.value
return old, true
}
if m.buckets[i].dib() < e.dib() {
e, m.buckets[i] = m.buckets[i], e
}
i = (i + 1) & m.mask
e.setDIB(e.dib() + 1)
}
}
// Get returns a value for a key.
// Returns false when no value has been assign for key.
func (m *MapU64) Get(key uint64) (interface{}, bool) {
if len(m.buckets) == 0 {
return nil, false
}
hash := m.hash(key)
i := hash & m.mask
for {
if m.buckets[i].dib() == 0 {
return nil, false
}
if m.buckets[i].hash() == hash && m.buckets[i].key == key {
return m.buckets[i].value, true
}
i = (i + 1) & m.mask
}
}
// Len returns the number of values in map.
func (m *MapU64) Len() int {
return m.length
}
// Delete deletes a value for a key.
// Returns the deleted value, or false when no value was assigned.
func (m *MapU64) Delete(key uint64) (interface{}, bool) {
if len(m.buckets) == 0 {
return nil, false
}
hash := m.hash(key)
i := hash & m.mask
for {
if m.buckets[i].dib() == 0 {
return nil, false
}
if m.buckets[i].hash() == hash && m.buckets[i].key == key {
old := m.buckets[i].value
m.remove(i)
return old, true
}
i = (i + 1) & m.mask
}
}
func (m *MapU64) remove(i int) {
m.buckets[i].setDIB(0)
for {
pi := i
i = (i + 1) & m.mask
if m.buckets[i].dib() <= 1 {
m.buckets[pi] = entryU64{}
break
}
m.buckets[pi] = m.buckets[i]
m.buckets[pi].setDIB(m.buckets[pi].dib() - 1)
}
m.length--
if len(m.buckets) > m.cap && m.length <= m.shrinkAt {
m.resize(m.length)
}
}
// Range iterates overall all key/values.
// It's not safe to call or Set or Delete while ranging.
func (m *MapU64) Range(iter func(key uint64, value interface{}) bool) {
for i := 0; i < len(m.buckets); i++ {
if m.buckets[i].dib() > 0 {
if !iter(m.buckets[i].key, m.buckets[i].value) {
return
}
}
}
}