tile38/vendor/github.com/tidwall/geojson/geo/geo.go

96 lines
3.0 KiB
Go
Raw Normal View History

// Copyright 2018 Joshua J Baker. All rights reserved.
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
package geo
import (
"math"
)
const (
earthRadius = 6371e3
radians = math.Pi / 180
degrees = 180 / math.Pi
)
// DistanceTo return the distance in meteres between two point.
func DistanceTo(latA, lonA, latB, lonB float64) (meters float64) {
φ1 := latA * radians
λ1 := lonA * radians
φ2 := latB * radians
λ2 := lonB * radians
Δφ := φ2 - φ1
Δλ := λ2 - λ1
a := math.Sin(Δφ/2)*math.Sin(Δφ/2) +
math.Cos(φ1)*math.Cos(φ2)*math.Sin(Δλ/2)*math.Sin(Δλ/2)
c := 2 * math.Atan2(math.Sqrt(a), math.Sqrt(1-a))
return earthRadius * c
}
// DestinationPoint return the destination from a point based on a
// distance and bearing.
func DestinationPoint(lat, lon, meters, bearingDegrees float64) (
destLat, destLon float64,
) {
// see http://williams.best.vwh.net/avform.htm#LL
δ := meters / earthRadius // angular distance in radians
θ := bearingDegrees * radians
φ1 := lat * radians
λ1 := lon * radians
φ2 := math.Asin(math.Sin(φ1)*math.Cos(δ) +
math.Cos(φ1)*math.Sin(δ)*math.Cos(θ))
λ2 := λ1 + math.Atan2(math.Sin(θ)*math.Sin(δ)*math.Cos(φ1),
math.Cos(δ)-math.Sin(φ1)*math.Sin(φ2))
λ2 = math.Mod(λ2+3*math.Pi, 2*math.Pi) - math.Pi // normalise to -180..+180°
return φ2 * degrees, λ2 * degrees
}
// BearingTo returns the (initial) bearing from point 'A' to point 'B'.
func BearingTo(latA, lonA, latB, lonB float64) float64 {
// tanθ = sinΔλ⋅cosφ2 / cosφ1⋅sinφ2 sinφ1⋅cosφ2⋅cosΔλ
// see mathforum.org/library/drmath/view/55417.html for derivation
φ1 := latA * radians
φ2 := latB * radians
Δλ := (lonB - lonA) * radians
y := math.Sin(Δλ) * math.Cos(φ2)
x := math.Cos(φ1)*math.Sin(φ2) - math.Sin(φ1)*math.Cos(φ2)*math.Cos(Δλ)
θ := math.Atan2(y, x)
return math.Mod(θ*degrees+360, 360)
}
// // SegmentIntersectsCircle ...
// func SegmentIntersectsCircle(
// startLat, startLon, endLat, endLon, centerLat, centerLon, meters float64,
// ) bool {
// // These are faster checks.
// // If they succeed there's no need do complicate things.
// if DistanceTo(startLat, startLon, centerLat, centerLon) <= meters {
// return true
// }
// if DistanceTo(endLat, endLon, centerLat, centerLon) <= meters {
// return true
// }
// // Distance between start and end
// l := DistanceTo(startLat, startLon, endLat, endLon)
// // Unit direction vector
// dLat := (endLat - startLat) / l
// dLon := (endLon - startLon) / l
// // Point of the line closest to the center
// t := dLon*(centerLon-startLon) + dLat*(centerLat-startLat)
// pLat := t*dLat + startLat
// pLon := t*dLon + startLon
// if pLon < startLon || pLon > endLon || pLat < startLat || pLat > endLat {
// // closest point is outside the segment
// return false
// }
// // Distance from the closest point to the center
// return DistanceTo(centerLat, centerLon, pLat, pLon) <= meters
// }