tile38/vendor/github.com/tidwall/geojson/geometry/rtree.go

385 lines
8.2 KiB
Go
Raw Normal View History

2018-10-22 05:08:56 +03:00
package geometry
import (
"encoding/binary"
"math"
)
const rDims = 2
const rMaxEntries = 16
type rRect struct {
data interface{}
min, max [rDims]float64
}
type rNode struct {
count int
rects [rMaxEntries + 1]rRect
}
// rTree ...
type rTree struct {
height int
root rRect
count int
reinsert []rRect
}
func (r *rRect) expand(b *rRect) {
for i := 0; i < rDims; i++ {
if b.min[i] < r.min[i] {
r.min[i] = b.min[i]
}
if b.max[i] > r.max[i] {
r.max[i] = b.max[i]
}
}
}
// Insert inserts an item into the RTree
func (tr *rTree) Insert(min, max []float64, value interface{}) {
var item rRect
fit(min, max, value, &item)
tr.insert(&item)
}
func (tr *rTree) insert(item *rRect) {
if tr.root.data == nil {
fit(item.min[:], item.max[:], new(rNode), &tr.root)
}
grown := tr.root.insert(item, tr.height)
if grown {
tr.root.expand(item)
}
if tr.root.data.(*rNode).count == rMaxEntries+1 {
newRoot := new(rNode)
tr.root.splitLargestAxisEdgeSnap(&newRoot.rects[1])
newRoot.rects[0] = tr.root
newRoot.count = 2
tr.root.data = newRoot
tr.root.recalc()
tr.height++
}
tr.count++
}
func (r *rRect) chooseLeastEnlargement(b *rRect) int {
j, jenlargement, jarea := -1, 0.0, 0.0
n := r.data.(*rNode)
for i := 0; i < n.count; i++ {
// force inline
area := n.rects[i].max[0] - n.rects[i].min[0]
for j := 1; j < rDims; j++ {
area *= n.rects[i].max[j] - n.rects[i].min[j]
}
var enlargement float64
// force inline
enlargedArea := 1.0
for j := 0; j < len(n.rects[i].min); j++ {
if b.max[j] > n.rects[i].max[j] {
if b.min[j] < n.rects[i].min[j] {
enlargedArea *= b.max[j] - b.min[j]
} else {
enlargedArea *= b.max[j] - n.rects[i].min[j]
}
} else {
if b.min[j] < n.rects[i].min[j] {
enlargedArea *= n.rects[i].max[j] - b.min[j]
} else {
enlargedArea *= n.rects[i].max[j] - n.rects[i].min[j]
}
}
}
enlargement = enlargedArea - area
if j == -1 || enlargement < jenlargement {
j, jenlargement, jarea = i, enlargement, area
} else if enlargement == jenlargement {
if area < jarea {
j, jenlargement, jarea = i, enlargement, area
}
}
}
return j
}
func (r *rRect) recalc() {
n := r.data.(*rNode)
r.min = n.rects[0].min
r.max = n.rects[0].max
for i := 1; i < n.count; i++ {
r.expand(&n.rects[i])
}
}
// contains return struct when b is fully contained inside of n
func (r *rRect) contains(b *rRect) bool {
for i := 0; i < rDims; i++ {
if b.min[i] < r.min[i] || b.max[i] > r.max[i] {
return false
}
}
return true
}
func (r *rRect) largestAxis() (axis int, size float64) {
j, jsz := 0, 0.0
for i := 0; i < rDims; i++ {
sz := r.max[i] - r.min[i]
if i == 0 || sz > jsz {
j, jsz = i, sz
}
}
return j, jsz
}
func (r *rRect) splitLargestAxisEdgeSnap(right *rRect) {
axis, _ := r.largestAxis()
left := r
leftNode := left.data.(*rNode)
rightNode := new(rNode)
right.data = rightNode
var equals []rRect
for i := 0; i < leftNode.count; i++ {
minDist := leftNode.rects[i].min[axis] - left.min[axis]
maxDist := left.max[axis] - leftNode.rects[i].max[axis]
if minDist < maxDist {
// stay left
} else {
if minDist > maxDist {
// move to right
rightNode.rects[rightNode.count] = leftNode.rects[i]
rightNode.count++
} else {
// move to equals, at the end of the left array
equals = append(equals, leftNode.rects[i])
}
leftNode.rects[i] = leftNode.rects[leftNode.count-1]
leftNode.rects[leftNode.count-1].data = nil
leftNode.count--
i--
}
}
for _, b := range equals {
if leftNode.count < rightNode.count {
leftNode.rects[leftNode.count] = b
leftNode.count++
} else {
rightNode.rects[rightNode.count] = b
rightNode.count++
}
}
left.recalc()
right.recalc()
}
func (r *rRect) insert(item *rRect, height int) (grown bool) {
n := r.data.(*rNode)
if height == 0 {
n.rects[n.count] = *item
n.count++
grown = !r.contains(item)
return grown
}
// choose subtree
index := r.chooseLeastEnlargement(item)
child := &n.rects[index]
grown = child.insert(item, height-1)
if grown {
child.expand(item)
grown = !r.contains(item)
}
if child.data.(*rNode).count == rMaxEntries+1 {
child.splitLargestAxisEdgeSnap(&n.rects[n.count])
n.count++
}
return grown
}
// fit an external item into a rect type
func fit(min, max []float64, value interface{}, target *rRect) {
if max == nil {
max = min
}
if len(min) != len(max) {
panic("min/max dimension mismatch")
}
if len(min) != rDims {
panic("invalid number of dimensions")
}
for i := 0; i < rDims; i++ {
target.min[i] = min[i]
target.max[i] = max[i]
}
target.data = value
}
func (r *rRect) intersects(b *rRect) bool {
for i := 0; i < rDims; i++ {
if b.min[i] > r.max[i] || b.max[i] < r.min[i] {
return false
}
}
return true
}
func (r *rRect) search(
target *rRect, height int,
iter func(min, max []float64, value interface{}) bool,
) bool {
n := r.data.(*rNode)
if height == 0 {
for i := 0; i < n.count; i++ {
if target.intersects(&n.rects[i]) {
if !iter(n.rects[i].min[:], n.rects[i].max[:],
n.rects[i].data) {
return false
}
}
}
} else {
for i := 0; i < n.count; i++ {
if target.intersects(&n.rects[i]) {
if !n.rects[i].search(target, height-1, iter) {
return false
}
}
}
}
return true
}
func (tr *rTree) search(
target *rRect,
iter func(min, max []float64, value interface{}) bool,
) {
if tr.root.data == nil {
return
}
if target.intersects(&tr.root) {
tr.root.search(target, tr.height, iter)
}
}
// Search ...
func (tr *rTree) Search(
min, max []float64,
iter func(min, max []float64, value interface{}) bool,
) {
var target rRect
fit(min, max, nil, &target)
tr.search(&target, iter)
}
func appendFloat(dst []byte, num float64) []byte {
var buf [8]byte
binary.LittleEndian.PutUint64(buf[:], math.Float64bits(num))
return append(dst, buf[:]...)
}
func (r *rRect) compress(dst []byte, height int) []byte {
n := r.data.(*rNode)
dst = appendFloat(dst, r.min[0])
dst = appendFloat(dst, r.min[1])
dst = appendFloat(dst, r.max[0])
dst = appendFloat(dst, r.max[1])
dst = append(dst, byte(n.count))
if height == 0 {
var ibytes byte = 1
for i := 0; i < n.count; i++ {
ibytes2 := numBytes(uint32(n.rects[i].data.(int)))
if ibytes2 > ibytes {
ibytes = ibytes2
}
}
dst = append(dst, ibytes)
for i := 0; i < n.count; i++ {
dst = appendNum(dst, uint32(n.rects[i].data.(int)), ibytes)
}
return dst
}
mark := make([]int, n.count)
for i := 0; i < n.count; i++ {
mark[i] = len(dst)
dst = append(dst, 0, 0, 0, 0)
}
for i := 0; i < n.count; i++ {
binary.LittleEndian.PutUint32(dst[mark[i]:], uint32(len(dst)))
dst = n.rects[i].compress(dst, height-1)
}
return dst
}
func (tr *rTree) compress(dst []byte) []byte {
if tr.root.data == nil {
return dst
}
dst = append(dst, byte(tr.height))
return tr.root.compress(dst, tr.height)
}
func rCompressSearch(
data []byte,
addr int,
series *baseSeries,
rect Rect,
iter func(seg Segment, item int) bool,
) bool {
if int(addr) == len(data) {
return true
}
height := int(data[addr])
addr++
return rnCompressSearch(data, addr, series, rect, height, iter)
}
func rnCompressSearch(
data []byte,
addr int,
series *baseSeries,
rect Rect,
height int,
iter func(seg Segment, item int) bool,
) bool {
var nrect Rect
nrect.Min.X = math.Float64frombits(binary.LittleEndian.Uint64(data[addr:]))
addr += 8
nrect.Min.Y = math.Float64frombits(binary.LittleEndian.Uint64(data[addr:]))
addr += 8
nrect.Max.X = math.Float64frombits(binary.LittleEndian.Uint64(data[addr:]))
addr += 8
nrect.Max.Y = math.Float64frombits(binary.LittleEndian.Uint64(data[addr:]))
addr += 8
if !rect.IntersectsRect(nrect) {
return true
}
count := int(data[addr])
addr++
if height == 0 {
ibytes := data[addr]
addr++
for i := 0; i < count; i++ {
item := int(readNum(data[addr:], ibytes))
addr += int(ibytes)
seg := series.SegmentAt(int(item))
irect := seg.Rect()
if irect.IntersectsRect(rect) {
if !iter(seg, int(item)) {
return false
}
}
}
return true
}
for i := 0; i < count; i++ {
naddr := int(binary.LittleEndian.Uint32(data[addr:]))
addr += 4
if !rnCompressSearch(data, naddr, series, rect, height-1, iter) {
return false
}
}
return true
}