tile38/vendor/github.com/pierrec/lz4/block.go

388 lines
9.6 KiB
Go
Raw Normal View History

package lz4
import (
"encoding/binary"
2020-06-25 00:20:22 +03:00
"fmt"
"math/bits"
)
2020-06-25 00:20:22 +03:00
// blockHash hashes the lower 6 bytes into a value < htSize.
func blockHash(x uint64) uint32 {
const prime6bytes = 227718039650203
return uint32(((x << (64 - 48)) * prime6bytes) >> (64 - hashLog))
}
// CompressBlockBound returns the maximum size of a given buffer of size n, when not compressible.
func CompressBlockBound(n int) int {
return n + n/255 + 16
}
2020-06-25 00:20:22 +03:00
// UncompressBlock uncompresses the source buffer into the destination one,
// and returns the uncompressed size.
//
// The destination buffer must be sized appropriately.
//
// An error is returned if the source data is invalid or the destination buffer is too small.
2020-06-25 00:20:22 +03:00
func UncompressBlock(src, dst []byte) (int, error) {
if len(src) == 0 {
return 0, nil
}
2020-06-25 00:20:22 +03:00
if di := decodeBlock(dst, src); di >= 0 {
return di, nil
}
2020-06-25 00:20:22 +03:00
return 0, ErrInvalidSourceShortBuffer
}
2020-06-25 00:20:22 +03:00
// CompressBlock compresses the source buffer into the destination one.
// This is the fast version of LZ4 compression and also the default one.
2020-06-25 00:20:22 +03:00
// The size of hashTable must be at least 64Kb.
//
// The size of the compressed data is returned. If it is 0 and no error, then the data is incompressible.
//
// An error is returned if the destination buffer is too small.
2020-06-25 00:20:22 +03:00
func CompressBlock(src, dst []byte, hashTable []int) (_ int, err error) {
if len(hashTable) < htSize {
return 0, fmt.Errorf("hash table too small, should be at least %d in size", htSize)
}
defer recoverBlock(&err)
// adaptSkipLog sets how quickly the compressor begins skipping blocks when data is incompressible.
// This significantly speeds up incompressible data and usually has very small impact on compresssion.
// bytes to skip = 1 + (bytes since last match >> adaptSkipLog)
const adaptSkipLog = 7
sn, dn := len(src)-mfLimit, len(dst)
2020-06-25 00:20:22 +03:00
if sn <= 0 || dn == 0 {
return 0, nil
}
2020-06-25 00:20:22 +03:00
// Prove to the compiler the table has at least htSize elements.
// The compiler can see that "uint32() >> hashShift" cannot be out of bounds.
hashTable = hashTable[:htSize]
// si: Current position of the search.
// anchor: Position of the current literals.
var si, di, anchor int
// Fast scan strategy: the hash table only stores the last 4 bytes sequences.
for si < sn {
// Hash the next 6 bytes (sequence)...
match := binary.LittleEndian.Uint64(src[si:])
h := blockHash(match)
h2 := blockHash(match >> 8)
// We check a match at s, s+1 and s+2 and pick the first one we get.
// Checking 3 only requires us to load the source one.
ref := hashTable[h]
ref2 := hashTable[h2]
hashTable[h] = si
2020-06-25 00:20:22 +03:00
hashTable[h2] = si + 1
offset := si - ref
2020-06-25 00:20:22 +03:00
// If offset <= 0 we got an old entry in the hash table.
if offset <= 0 || offset >= winSize || // Out of window.
uint32(match) != binary.LittleEndian.Uint32(src[ref:]) { // Hash collision on different matches.
// No match. Start calculating another hash.
// The processor can usually do this out-of-order.
h = blockHash(match >> 16)
ref = hashTable[h]
// Check the second match at si+1
si += 1
offset = si - ref2
if offset <= 0 || offset >= winSize ||
uint32(match>>8) != binary.LittleEndian.Uint32(src[ref2:]) {
// No match. Check the third match at si+2
si += 1
offset = si - ref
hashTable[h] = si
if offset <= 0 || offset >= winSize ||
uint32(match>>16) != binary.LittleEndian.Uint32(src[ref:]) {
// Skip one extra byte (at si+3) before we check 3 matches again.
si += 2 + (si-anchor)>>adaptSkipLog
continue
}
}
}
2020-06-25 00:20:22 +03:00
// Match found.
lLen := si - anchor // Literal length.
// We already matched 4 bytes.
mLen := 4
// Extend backwards if we can, reducing literals.
tOff := si - offset - 1
for lLen > 0 && tOff >= 0 && src[si-1] == src[tOff] {
si--
tOff--
lLen--
mLen++
}
// Add the match length, so we continue search at the end.
// Use mLen to store the offset base.
si, mLen = si+mLen, si+minMatch
// Find the longest match by looking by batches of 8 bytes.
for si+8 < sn {
x := binary.LittleEndian.Uint64(src[si:]) ^ binary.LittleEndian.Uint64(src[si-offset:])
if x == 0 {
si += 8
} else {
// Stop is first non-zero byte.
si += bits.TrailingZeros64(x) >> 3
break
}
}
2020-06-25 00:20:22 +03:00
mLen = si - mLen
if mLen < 0xF {
dst[di] = byte(mLen)
} else {
dst[di] = 0xF
}
2020-06-25 00:20:22 +03:00
// Encode literals length.
if lLen < 0xF {
dst[di] |= byte(lLen << 4)
} else {
dst[di] |= 0xF0
2020-06-25 00:20:22 +03:00
di++
l := lLen - 0xF
for ; l >= 0xFF; l -= 0xFF {
dst[di] = 0xFF
2020-06-25 00:20:22 +03:00
di++
}
dst[di] = byte(l)
}
2020-06-25 00:20:22 +03:00
di++
2020-06-25 00:20:22 +03:00
// Literals.
copy(dst[di:di+lLen], src[anchor:anchor+lLen])
di += lLen + 2
anchor = si
2020-06-25 00:20:22 +03:00
// Encode offset.
_ = dst[di] // Bound check elimination.
dst[di-2], dst[di-1] = byte(offset), byte(offset>>8)
2020-06-25 00:20:22 +03:00
// Encode match length part 2.
if mLen >= 0xF {
for mLen -= 0xF; mLen >= 0xFF; mLen -= 0xFF {
dst[di] = 0xFF
2020-06-25 00:20:22 +03:00
di++
}
dst[di] = byte(mLen)
2020-06-25 00:20:22 +03:00
di++
}
2020-06-25 00:20:22 +03:00
// Check if we can load next values.
if si >= sn {
break
}
// Hash match end-2
h = blockHash(binary.LittleEndian.Uint64(src[si-2:]))
hashTable[h] = si - 2
}
if anchor == 0 {
2020-06-25 00:20:22 +03:00
// Incompressible.
return 0, nil
}
2020-06-25 00:20:22 +03:00
// Last literals.
lLen := len(src) - anchor
if lLen < 0xF {
dst[di] = byte(lLen << 4)
} else {
dst[di] = 0xF0
2020-06-25 00:20:22 +03:00
di++
for lLen -= 0xF; lLen >= 0xFF; lLen -= 0xFF {
dst[di] = 0xFF
2020-06-25 00:20:22 +03:00
di++
}
dst[di] = byte(lLen)
}
2020-06-25 00:20:22 +03:00
di++
2020-06-25 00:20:22 +03:00
// Write the last literals.
if di >= anchor {
// Incompressible.
return 0, nil
}
2020-06-25 00:20:22 +03:00
di += copy(dst[di:di+len(src)-anchor], src[anchor:])
return di, nil
}
2020-06-25 00:20:22 +03:00
// blockHash hashes 4 bytes into a value < winSize.
func blockHashHC(x uint32) uint32 {
const hasher uint32 = 2654435761 // Knuth multiplicative hash.
return x * hasher >> (32 - winSizeLog)
}
// CompressBlockHC compresses the source buffer src into the destination dst
// with max search depth (use 0 or negative value for no max).
//
// CompressBlockHC compression ratio is better than CompressBlock but it is also slower.
//
// The size of the compressed data is returned. If it is 0 and no error, then the data is not compressible.
//
// An error is returned if the destination buffer is too small.
2020-06-25 00:20:22 +03:00
func CompressBlockHC(src, dst []byte, depth int) (_ int, err error) {
defer recoverBlock(&err)
// adaptSkipLog sets how quickly the compressor begins skipping blocks when data is incompressible.
// This significantly speeds up incompressible data and usually has very small impact on compresssion.
// bytes to skip = 1 + (bytes since last match >> adaptSkipLog)
const adaptSkipLog = 7
sn, dn := len(src)-mfLimit, len(dst)
2020-06-25 00:20:22 +03:00
if sn <= 0 || dn == 0 {
return 0, nil
}
var si, di int
2020-06-25 00:20:22 +03:00
// hashTable: stores the last position found for a given hash
// chainTable: stores previous positions for a given hash
var hashTable, chainTable [winSize]int
if depth <= 0 {
depth = winSize
}
anchor := si
2020-06-25 00:20:22 +03:00
for si < sn {
// Hash the next 4 bytes (sequence).
match := binary.LittleEndian.Uint32(src[si:])
h := blockHashHC(match)
2020-06-25 00:20:22 +03:00
// Follow the chain until out of window and give the longest match.
mLen := 0
offset := 0
2020-06-25 00:20:22 +03:00
for next, try := hashTable[h], depth; try > 0 && next > 0 && si-next < winSize; next = chainTable[next&winMask] {
// The first (mLen==0) or next byte (mLen>=minMatch) at current match length
// must match to improve on the match length.
if src[next+mLen] != src[si+mLen] {
continue
}
ml := 0
// Compare the current position with a previous with the same hash.
for ml < sn-si {
x := binary.LittleEndian.Uint64(src[next+ml:]) ^ binary.LittleEndian.Uint64(src[si+ml:])
if x == 0 {
ml += 8
} else {
// Stop is first non-zero byte.
ml += bits.TrailingZeros64(x) >> 3
break
}
}
2020-06-25 00:20:22 +03:00
if ml < minMatch || ml <= mLen {
// Match too small (<minMath) or smaller than the current match.
continue
}
// Found a longer match, keep its position and length.
mLen = ml
offset = si - next
// Try another previous position with the same hash.
try--
}
chainTable[si&winMask] = hashTable[h]
2020-06-25 00:20:22 +03:00
hashTable[h] = si
2020-06-25 00:20:22 +03:00
// No match found.
if mLen == 0 {
2020-06-25 00:20:22 +03:00
si += 1 + (si-anchor)>>adaptSkipLog
continue
}
2020-06-25 00:20:22 +03:00
// Match found.
// Update hash/chain tables with overlapping bytes:
// si already hashed, add everything from si+1 up to the match length.
winStart := si + 1
if ws := si + mLen - winSize; ws > winStart {
winStart = ws
}
for si, ml := winStart, si+mLen; si < ml; {
match >>= 8
match |= uint32(src[si+3]) << 24
h := blockHashHC(match)
chainTable[si&winMask] = hashTable[h]
hashTable[h] = si
2020-06-25 00:20:22 +03:00
si++
}
lLen := si - anchor
si += mLen
2020-06-25 00:20:22 +03:00
mLen -= minMatch // Match length does not include minMatch.
if mLen < 0xF {
dst[di] = byte(mLen)
} else {
dst[di] = 0xF
}
2020-06-25 00:20:22 +03:00
// Encode literals length.
if lLen < 0xF {
dst[di] |= byte(lLen << 4)
} else {
dst[di] |= 0xF0
2020-06-25 00:20:22 +03:00
di++
l := lLen - 0xF
for ; l >= 0xFF; l -= 0xFF {
dst[di] = 0xFF
2020-06-25 00:20:22 +03:00
di++
}
dst[di] = byte(l)
}
2020-06-25 00:20:22 +03:00
di++
2020-06-25 00:20:22 +03:00
// Literals.
copy(dst[di:di+lLen], src[anchor:anchor+lLen])
di += lLen
anchor = si
2020-06-25 00:20:22 +03:00
// Encode offset.
di += 2
dst[di-2], dst[di-1] = byte(offset), byte(offset>>8)
2020-06-25 00:20:22 +03:00
// Encode match length part 2.
if mLen >= 0xF {
for mLen -= 0xF; mLen >= 0xFF; mLen -= 0xFF {
dst[di] = 0xFF
2020-06-25 00:20:22 +03:00
di++
}
dst[di] = byte(mLen)
2020-06-25 00:20:22 +03:00
di++
}
}
if anchor == 0 {
2020-06-25 00:20:22 +03:00
// Incompressible.
return 0, nil
}
2020-06-25 00:20:22 +03:00
// Last literals.
lLen := len(src) - anchor
if lLen < 0xF {
dst[di] = byte(lLen << 4)
} else {
dst[di] = 0xF0
2020-06-25 00:20:22 +03:00
di++
lLen -= 0xF
for ; lLen >= 0xFF; lLen -= 0xFF {
dst[di] = 0xFF
2020-06-25 00:20:22 +03:00
di++
}
dst[di] = byte(lLen)
}
2020-06-25 00:20:22 +03:00
di++
2020-06-25 00:20:22 +03:00
// Write the last literals.
if di >= anchor {
// Incompressible.
return 0, nil
}
2020-06-25 00:20:22 +03:00
di += copy(dst[di:di+len(src)-anchor], src[anchor:])
return di, nil
}