tile38/vendor/github.com/cespare/xxhash/xxhash.go

237 lines
5.3 KiB
Go
Raw Normal View History

Fix excessive memory usage for objects with TTLs This commit fixes an issue where Tile38 was using lots of extra memory to track objects that are marked to expire. This was creating problems with applications that set big TTLs. How it worked before: Every collection had a unique hashmap that stores expiration timestamps for every object in that collection. Along with the hashmaps, there's also one big server-wide list that gets appended every time a new SET+EX is performed. From a background routine, this list is looped over at least 10 times per second and is randomly searched for potential candidates that might need expiring. The routine then removes those entries from the list and tests if the objects matching the entries have actually expired. If so, these objects are deleted them from the database. When at least 25% of the 20 candidates are deleted the loop is immediately continued, otherwise the loop backs off with a 100ms pause. Why this was a problem. The list grows one entry for every SET+EX. When TTLs are long, like 24-hours or more, it would take at least that much time before the entry is removed. So for databased that have objects that use TTLs and are updated often this could lead to a very large list. How it was fixed. The list was removed and the hashmap is now search randomly. This required a new hashmap implementation, as the built-in Go map does not provide an operation for randomly geting entries. The chosen implementation is a robinhood-hash because it provides open-addressing, which makes for simple random bucket selections. Issue #502
2019-10-29 21:04:07 +03:00
// Package xxhash implements the 64-bit variant of xxHash (XXH64) as described
// at http://cyan4973.github.io/xxHash/.
package xxhash
import (
"encoding/binary"
"errors"
"math/bits"
)
const (
prime1 uint64 = 11400714785074694791
prime2 uint64 = 14029467366897019727
prime3 uint64 = 1609587929392839161
prime4 uint64 = 9650029242287828579
prime5 uint64 = 2870177450012600261
)
// NOTE(caleb): I'm using both consts and vars of the primes. Using consts where
// possible in the Go code is worth a small (but measurable) performance boost
// by avoiding some MOVQs. Vars are needed for the asm and also are useful for
// convenience in the Go code in a few places where we need to intentionally
// avoid constant arithmetic (e.g., v1 := prime1 + prime2 fails because the
// result overflows a uint64).
var (
prime1v = prime1
prime2v = prime2
prime3v = prime3
prime4v = prime4
prime5v = prime5
)
// Digest implements hash.Hash64.
type Digest struct {
v1 uint64
v2 uint64
v3 uint64
v4 uint64
total uint64
mem [32]byte
n int // how much of mem is used
}
// New creates a new Digest that computes the 64-bit xxHash algorithm.
func New() *Digest {
var d Digest
d.Reset()
return &d
}
// Reset clears the Digest's state so that it can be reused.
func (d *Digest) Reset() {
d.v1 = prime1v + prime2
d.v2 = prime2
d.v3 = 0
d.v4 = -prime1v
d.total = 0
d.n = 0
}
// Size always returns 8 bytes.
func (d *Digest) Size() int { return 8 }
// BlockSize always returns 32 bytes.
func (d *Digest) BlockSize() int { return 32 }
// Write adds more data to d. It always returns len(b), nil.
func (d *Digest) Write(b []byte) (n int, err error) {
n = len(b)
d.total += uint64(n)
if d.n+n < 32 {
// This new data doesn't even fill the current block.
copy(d.mem[d.n:], b)
d.n += n
return
}
if d.n > 0 {
// Finish off the partial block.
copy(d.mem[d.n:], b)
d.v1 = round(d.v1, u64(d.mem[0:8]))
d.v2 = round(d.v2, u64(d.mem[8:16]))
d.v3 = round(d.v3, u64(d.mem[16:24]))
d.v4 = round(d.v4, u64(d.mem[24:32]))
b = b[32-d.n:]
d.n = 0
}
if len(b) >= 32 {
// One or more full blocks left.
nw := writeBlocks(d, b)
b = b[nw:]
}
// Store any remaining partial block.
copy(d.mem[:], b)
d.n = len(b)
return
}
// Sum appends the current hash to b and returns the resulting slice.
func (d *Digest) Sum(b []byte) []byte {
s := d.Sum64()
return append(
b,
byte(s>>56),
byte(s>>48),
byte(s>>40),
byte(s>>32),
byte(s>>24),
byte(s>>16),
byte(s>>8),
byte(s),
)
}
// Sum64 returns the current hash.
func (d *Digest) Sum64() uint64 {
var h uint64
if d.total >= 32 {
v1, v2, v3, v4 := d.v1, d.v2, d.v3, d.v4
h = rol1(v1) + rol7(v2) + rol12(v3) + rol18(v4)
h = mergeRound(h, v1)
h = mergeRound(h, v2)
h = mergeRound(h, v3)
h = mergeRound(h, v4)
} else {
h = d.v3 + prime5
}
h += d.total
i, end := 0, d.n
for ; i+8 <= end; i += 8 {
k1 := round(0, u64(d.mem[i:i+8]))
h ^= k1
h = rol27(h)*prime1 + prime4
}
if i+4 <= end {
h ^= uint64(u32(d.mem[i:i+4])) * prime1
h = rol23(h)*prime2 + prime3
i += 4
}
for i < end {
h ^= uint64(d.mem[i]) * prime5
h = rol11(h) * prime1
i++
}
h ^= h >> 33
h *= prime2
h ^= h >> 29
h *= prime3
h ^= h >> 32
return h
}
const (
magic = "xxh\x06"
marshaledSize = len(magic) + 8*5 + 32
)
// MarshalBinary implements the encoding.BinaryMarshaler interface.
func (d *Digest) MarshalBinary() ([]byte, error) {
b := make([]byte, 0, marshaledSize)
b = append(b, magic...)
b = appendUint64(b, d.v1)
b = appendUint64(b, d.v2)
b = appendUint64(b, d.v3)
b = appendUint64(b, d.v4)
b = appendUint64(b, d.total)
b = append(b, d.mem[:d.n]...)
b = b[:len(b)+len(d.mem)-d.n]
return b, nil
}
// UnmarshalBinary implements the encoding.BinaryUnmarshaler interface.
func (d *Digest) UnmarshalBinary(b []byte) error {
if len(b) < len(magic) || string(b[:len(magic)]) != magic {
return errors.New("xxhash: invalid hash state identifier")
}
if len(b) != marshaledSize {
return errors.New("xxhash: invalid hash state size")
}
b = b[len(magic):]
b, d.v1 = consumeUint64(b)
b, d.v2 = consumeUint64(b)
b, d.v3 = consumeUint64(b)
b, d.v4 = consumeUint64(b)
b, d.total = consumeUint64(b)
copy(d.mem[:], b)
b = b[len(d.mem):]
d.n = int(d.total % uint64(len(d.mem)))
return nil
}
func appendUint64(b []byte, x uint64) []byte {
var a [8]byte
binary.LittleEndian.PutUint64(a[:], x)
return append(b, a[:]...)
}
func consumeUint64(b []byte) ([]byte, uint64) {
x := u64(b)
return b[8:], x
}
func u64(b []byte) uint64 { return binary.LittleEndian.Uint64(b) }
func u32(b []byte) uint32 { return binary.LittleEndian.Uint32(b) }
func round(acc, input uint64) uint64 {
acc += input * prime2
acc = rol31(acc)
acc *= prime1
return acc
}
func mergeRound(acc, val uint64) uint64 {
val = round(0, val)
acc ^= val
acc = acc*prime1 + prime4
return acc
}
func rol1(x uint64) uint64 { return bits.RotateLeft64(x, 1) }
func rol7(x uint64) uint64 { return bits.RotateLeft64(x, 7) }
func rol11(x uint64) uint64 { return bits.RotateLeft64(x, 11) }
func rol12(x uint64) uint64 { return bits.RotateLeft64(x, 12) }
func rol18(x uint64) uint64 { return bits.RotateLeft64(x, 18) }
func rol23(x uint64) uint64 { return bits.RotateLeft64(x, 23) }
func rol27(x uint64) uint64 { return bits.RotateLeft64(x, 27) }
func rol31(x uint64) uint64 { return bits.RotateLeft64(x, 31) }