tile38/vendor/github.com/Shopify/sarama/consumer.go

750 lines
22 KiB
Go
Raw Permalink Normal View History

package sarama
import (
"errors"
"fmt"
"sync"
"sync/atomic"
"time"
)
// ConsumerMessage encapsulates a Kafka message returned by the consumer.
type ConsumerMessage struct {
Key, Value []byte
Topic string
Partition int32
Offset int64
Timestamp time.Time // only set if kafka is version 0.10+, inner message timestamp
BlockTimestamp time.Time // only set if kafka is version 0.10+, outer (compressed) block timestamp
}
// ConsumerError is what is provided to the user when an error occurs.
// It wraps an error and includes the topic and partition.
type ConsumerError struct {
Topic string
Partition int32
Err error
}
func (ce ConsumerError) Error() string {
return fmt.Sprintf("kafka: error while consuming %s/%d: %s", ce.Topic, ce.Partition, ce.Err)
}
// ConsumerErrors is a type that wraps a batch of errors and implements the Error interface.
// It can be returned from the PartitionConsumer's Close methods to avoid the need to manually drain errors
// when stopping.
type ConsumerErrors []*ConsumerError
func (ce ConsumerErrors) Error() string {
return fmt.Sprintf("kafka: %d errors while consuming", len(ce))
}
// Consumer manages PartitionConsumers which process Kafka messages from brokers. You MUST call Close()
// on a consumer to avoid leaks, it will not be garbage-collected automatically when it passes out of
// scope.
//
// Sarama's Consumer type does not currently support automatic consumer-group rebalancing and offset tracking.
// For Zookeeper-based tracking (Kafka 0.8.2 and earlier), the https://github.com/wvanbergen/kafka library
// builds on Sarama to add this support. For Kafka-based tracking (Kafka 0.9 and later), the
// https://github.com/bsm/sarama-cluster library builds on Sarama to add this support.
type Consumer interface {
// Topics returns the set of available topics as retrieved from the cluster
// metadata. This method is the same as Client.Topics(), and is provided for
// convenience.
Topics() ([]string, error)
// Partitions returns the sorted list of all partition IDs for the given topic.
// This method is the same as Client.Partitions(), and is provided for convenience.
Partitions(topic string) ([]int32, error)
// ConsumePartition creates a PartitionConsumer on the given topic/partition with
// the given offset. It will return an error if this Consumer is already consuming
// on the given topic/partition. Offset can be a literal offset, or OffsetNewest
// or OffsetOldest
ConsumePartition(topic string, partition int32, offset int64) (PartitionConsumer, error)
// HighWaterMarks returns the current high water marks for each topic and partition.
// Consistency between partitions is not guaranteed since high water marks are updated separately.
HighWaterMarks() map[string]map[int32]int64
// Close shuts down the consumer. It must be called after all child
// PartitionConsumers have already been closed.
Close() error
}
type consumer struct {
client Client
conf *Config
ownClient bool
lock sync.Mutex
children map[string]map[int32]*partitionConsumer
brokerConsumers map[*Broker]*brokerConsumer
}
// NewConsumer creates a new consumer using the given broker addresses and configuration.
func NewConsumer(addrs []string, config *Config) (Consumer, error) {
client, err := NewClient(addrs, config)
if err != nil {
return nil, err
}
c, err := NewConsumerFromClient(client)
if err != nil {
return nil, err
}
c.(*consumer).ownClient = true
return c, nil
}
// NewConsumerFromClient creates a new consumer using the given client. It is still
// necessary to call Close() on the underlying client when shutting down this consumer.
func NewConsumerFromClient(client Client) (Consumer, error) {
// Check that we are not dealing with a closed Client before processing any other arguments
if client.Closed() {
return nil, ErrClosedClient
}
c := &consumer{
client: client,
conf: client.Config(),
children: make(map[string]map[int32]*partitionConsumer),
brokerConsumers: make(map[*Broker]*brokerConsumer),
}
return c, nil
}
func (c *consumer) Close() error {
if c.ownClient {
return c.client.Close()
}
return nil
}
func (c *consumer) Topics() ([]string, error) {
return c.client.Topics()
}
func (c *consumer) Partitions(topic string) ([]int32, error) {
return c.client.Partitions(topic)
}
func (c *consumer) ConsumePartition(topic string, partition int32, offset int64) (PartitionConsumer, error) {
child := &partitionConsumer{
consumer: c,
conf: c.conf,
topic: topic,
partition: partition,
messages: make(chan *ConsumerMessage, c.conf.ChannelBufferSize),
errors: make(chan *ConsumerError, c.conf.ChannelBufferSize),
feeder: make(chan *FetchResponse, 1),
trigger: make(chan none, 1),
dying: make(chan none),
fetchSize: c.conf.Consumer.Fetch.Default,
}
if err := child.chooseStartingOffset(offset); err != nil {
return nil, err
}
var leader *Broker
var err error
if leader, err = c.client.Leader(child.topic, child.partition); err != nil {
return nil, err
}
if err := c.addChild(child); err != nil {
return nil, err
}
go withRecover(child.dispatcher)
go withRecover(child.responseFeeder)
child.broker = c.refBrokerConsumer(leader)
child.broker.input <- child
return child, nil
}
func (c *consumer) HighWaterMarks() map[string]map[int32]int64 {
c.lock.Lock()
defer c.lock.Unlock()
hwms := make(map[string]map[int32]int64)
for topic, p := range c.children {
hwm := make(map[int32]int64, len(p))
for partition, pc := range p {
hwm[partition] = pc.HighWaterMarkOffset()
}
hwms[topic] = hwm
}
return hwms
}
func (c *consumer) addChild(child *partitionConsumer) error {
c.lock.Lock()
defer c.lock.Unlock()
topicChildren := c.children[child.topic]
if topicChildren == nil {
topicChildren = make(map[int32]*partitionConsumer)
c.children[child.topic] = topicChildren
}
if topicChildren[child.partition] != nil {
return ConfigurationError("That topic/partition is already being consumed")
}
topicChildren[child.partition] = child
return nil
}
func (c *consumer) removeChild(child *partitionConsumer) {
c.lock.Lock()
defer c.lock.Unlock()
delete(c.children[child.topic], child.partition)
}
func (c *consumer) refBrokerConsumer(broker *Broker) *brokerConsumer {
c.lock.Lock()
defer c.lock.Unlock()
bc := c.brokerConsumers[broker]
if bc == nil {
bc = c.newBrokerConsumer(broker)
c.brokerConsumers[broker] = bc
}
bc.refs++
return bc
}
func (c *consumer) unrefBrokerConsumer(brokerWorker *brokerConsumer) {
c.lock.Lock()
defer c.lock.Unlock()
brokerWorker.refs--
if brokerWorker.refs == 0 {
close(brokerWorker.input)
if c.brokerConsumers[brokerWorker.broker] == brokerWorker {
delete(c.brokerConsumers, brokerWorker.broker)
}
}
}
func (c *consumer) abandonBrokerConsumer(brokerWorker *brokerConsumer) {
c.lock.Lock()
defer c.lock.Unlock()
delete(c.brokerConsumers, brokerWorker.broker)
}
// PartitionConsumer
// PartitionConsumer processes Kafka messages from a given topic and partition. You MUST call one of Close() or
// AsyncClose() on a PartitionConsumer to avoid leaks; it will not be garbage-collected automatically when it passes out
// of scope.
//
// The simplest way of using a PartitionConsumer is to loop over its Messages channel using a for/range
// loop. The PartitionConsumer will only stop itself in one case: when the offset being consumed is reported
// as out of range by the brokers. In this case you should decide what you want to do (try a different offset,
// notify a human, etc) and handle it appropriately. For all other error cases, it will just keep retrying.
// By default, it logs these errors to sarama.Logger; if you want to be notified directly of all errors, set
// your config's Consumer.Return.Errors to true and read from the Errors channel, using a select statement
// or a separate goroutine. Check out the Consumer examples to see implementations of these different approaches.
//
// To terminate such a for/range loop while the loop is executing, call AsyncClose. This will kick off the process of
// consumer tear-down & return imediately. Continue to loop, servicing the Messages channel until the teardown process
// AsyncClose initiated closes it (thus terminating the for/range loop). If you've already ceased reading Messages, call
// Close; this will signal the PartitionConsumer's goroutines to begin shutting down (just like AsyncClose), but will
// also drain the Messages channel, harvest all errors & return them once cleanup has completed.
type PartitionConsumer interface {
// AsyncClose initiates a shutdown of the PartitionConsumer. This method will return immediately, after which you
// should continue to service the 'Messages' and 'Errors' channels until they are empty. It is required to call this
// function, or Close before a consumer object passes out of scope, as it will otherwise leak memory. You must call
// this before calling Close on the underlying client.
AsyncClose()
// Close stops the PartitionConsumer from fetching messages. It will initiate a shutdown just like AsyncClose, drain
// the Messages channel, harvest any errors & return them to the caller. Note that if you are continuing to service
// the Messages channel when this function is called, you will be competing with Close for messages; consider
// calling AsyncClose, instead. It is required to call this function (or AsyncClose) before a consumer object passes
// out of scope, as it will otherwise leak memory. You must call this before calling Close on the underlying client.
Close() error
// Messages returns the read channel for the messages that are returned by
// the broker.
Messages() <-chan *ConsumerMessage
// Errors returns a read channel of errors that occurred during consuming, if
// enabled. By default, errors are logged and not returned over this channel.
// If you want to implement any custom error handling, set your config's
// Consumer.Return.Errors setting to true, and read from this channel.
Errors() <-chan *ConsumerError
// HighWaterMarkOffset returns the high water mark offset of the partition,
// i.e. the offset that will be used for the next message that will be produced.
// You can use this to determine how far behind the processing is.
HighWaterMarkOffset() int64
}
type partitionConsumer struct {
highWaterMarkOffset int64 // must be at the top of the struct because https://golang.org/pkg/sync/atomic/#pkg-note-BUG
consumer *consumer
conf *Config
topic string
partition int32
broker *brokerConsumer
messages chan *ConsumerMessage
errors chan *ConsumerError
feeder chan *FetchResponse
trigger, dying chan none
responseResult error
fetchSize int32
offset int64
}
var errTimedOut = errors.New("timed out feeding messages to the user") // not user-facing
func (child *partitionConsumer) sendError(err error) {
cErr := &ConsumerError{
Topic: child.topic,
Partition: child.partition,
Err: err,
}
if child.conf.Consumer.Return.Errors {
child.errors <- cErr
} else {
Logger.Println(cErr)
}
}
func (child *partitionConsumer) dispatcher() {
for range child.trigger {
select {
case <-child.dying:
close(child.trigger)
case <-time.After(child.conf.Consumer.Retry.Backoff):
if child.broker != nil {
child.consumer.unrefBrokerConsumer(child.broker)
child.broker = nil
}
Logger.Printf("consumer/%s/%d finding new broker\n", child.topic, child.partition)
if err := child.dispatch(); err != nil {
child.sendError(err)
child.trigger <- none{}
}
}
}
if child.broker != nil {
child.consumer.unrefBrokerConsumer(child.broker)
}
child.consumer.removeChild(child)
close(child.feeder)
}
func (child *partitionConsumer) dispatch() error {
if err := child.consumer.client.RefreshMetadata(child.topic); err != nil {
return err
}
var leader *Broker
var err error
if leader, err = child.consumer.client.Leader(child.topic, child.partition); err != nil {
return err
}
child.broker = child.consumer.refBrokerConsumer(leader)
child.broker.input <- child
return nil
}
func (child *partitionConsumer) chooseStartingOffset(offset int64) error {
newestOffset, err := child.consumer.client.GetOffset(child.topic, child.partition, OffsetNewest)
if err != nil {
return err
}
oldestOffset, err := child.consumer.client.GetOffset(child.topic, child.partition, OffsetOldest)
if err != nil {
return err
}
switch {
case offset == OffsetNewest:
child.offset = newestOffset
case offset == OffsetOldest:
child.offset = oldestOffset
case offset >= oldestOffset && offset <= newestOffset:
child.offset = offset
default:
return ErrOffsetOutOfRange
}
return nil
}
func (child *partitionConsumer) Messages() <-chan *ConsumerMessage {
return child.messages
}
func (child *partitionConsumer) Errors() <-chan *ConsumerError {
return child.errors
}
func (child *partitionConsumer) AsyncClose() {
// this triggers whatever broker owns this child to abandon it and close its trigger channel, which causes
// the dispatcher to exit its loop, which removes it from the consumer then closes its 'messages' and
// 'errors' channel (alternatively, if the child is already at the dispatcher for some reason, that will
// also just close itself)
close(child.dying)
}
func (child *partitionConsumer) Close() error {
child.AsyncClose()
go withRecover(func() {
for range child.messages {
// drain
}
})
var errors ConsumerErrors
for err := range child.errors {
errors = append(errors, err)
}
if len(errors) > 0 {
return errors
}
return nil
}
func (child *partitionConsumer) HighWaterMarkOffset() int64 {
return atomic.LoadInt64(&child.highWaterMarkOffset)
}
func (child *partitionConsumer) responseFeeder() {
var msgs []*ConsumerMessage
msgSent := false
feederLoop:
for response := range child.feeder {
msgs, child.responseResult = child.parseResponse(response)
expiryTicker := time.NewTicker(child.conf.Consumer.MaxProcessingTime)
for i, msg := range msgs {
messageSelect:
select {
case child.messages <- msg:
msgSent = true
case <-expiryTicker.C:
if !msgSent {
child.responseResult = errTimedOut
child.broker.acks.Done()
for _, msg = range msgs[i:] {
child.messages <- msg
}
child.broker.input <- child
continue feederLoop
} else {
// current message has not been sent, return to select
// statement
msgSent = false
goto messageSelect
}
}
}
expiryTicker.Stop()
child.broker.acks.Done()
}
close(child.messages)
close(child.errors)
}
func (child *partitionConsumer) parseResponse(response *FetchResponse) ([]*ConsumerMessage, error) {
block := response.GetBlock(child.topic, child.partition)
if block == nil {
return nil, ErrIncompleteResponse
}
if block.Err != ErrNoError {
return nil, block.Err
}
if len(block.MsgSet.Messages) == 0 {
// We got no messages. If we got a trailing one then we need to ask for more data.
// Otherwise we just poll again and wait for one to be produced...
if block.MsgSet.PartialTrailingMessage {
if child.conf.Consumer.Fetch.Max > 0 && child.fetchSize == child.conf.Consumer.Fetch.Max {
// we can't ask for more data, we've hit the configured limit
child.sendError(ErrMessageTooLarge)
child.offset++ // skip this one so we can keep processing future messages
} else {
child.fetchSize *= 2
if child.conf.Consumer.Fetch.Max > 0 && child.fetchSize > child.conf.Consumer.Fetch.Max {
child.fetchSize = child.conf.Consumer.Fetch.Max
}
}
}
return nil, nil
}
// we got messages, reset our fetch size in case it was increased for a previous request
child.fetchSize = child.conf.Consumer.Fetch.Default
atomic.StoreInt64(&child.highWaterMarkOffset, block.HighWaterMarkOffset)
incomplete := false
prelude := true
var messages []*ConsumerMessage
for _, msgBlock := range block.MsgSet.Messages {
for _, msg := range msgBlock.Messages() {
offset := msg.Offset
if msg.Msg.Version >= 1 {
baseOffset := msgBlock.Offset - msgBlock.Messages()[len(msgBlock.Messages())-1].Offset
offset += baseOffset
}
if prelude && offset < child.offset {
continue
}
prelude = false
if offset >= child.offset {
messages = append(messages, &ConsumerMessage{
Topic: child.topic,
Partition: child.partition,
Key: msg.Msg.Key,
Value: msg.Msg.Value,
Offset: offset,
Timestamp: msg.Msg.Timestamp,
BlockTimestamp: msgBlock.Msg.Timestamp,
})
child.offset = offset + 1
} else {
incomplete = true
}
}
}
if incomplete || len(messages) == 0 {
return nil, ErrIncompleteResponse
}
return messages, nil
}
// brokerConsumer
type brokerConsumer struct {
consumer *consumer
broker *Broker
input chan *partitionConsumer
newSubscriptions chan []*partitionConsumer
wait chan none
subscriptions map[*partitionConsumer]none
acks sync.WaitGroup
refs int
}
func (c *consumer) newBrokerConsumer(broker *Broker) *brokerConsumer {
bc := &brokerConsumer{
consumer: c,
broker: broker,
input: make(chan *partitionConsumer),
newSubscriptions: make(chan []*partitionConsumer),
wait: make(chan none),
subscriptions: make(map[*partitionConsumer]none),
refs: 0,
}
go withRecover(bc.subscriptionManager)
go withRecover(bc.subscriptionConsumer)
return bc
}
func (bc *brokerConsumer) subscriptionManager() {
var buffer []*partitionConsumer
// The subscriptionManager constantly accepts new subscriptions on `input` (even when the main subscriptionConsumer
// goroutine is in the middle of a network request) and batches it up. The main worker goroutine picks
// up a batch of new subscriptions between every network request by reading from `newSubscriptions`, so we give
// it nil if no new subscriptions are available. We also write to `wait` only when new subscriptions is available,
// so the main goroutine can block waiting for work if it has none.
for {
if len(buffer) > 0 {
select {
case event, ok := <-bc.input:
if !ok {
goto done
}
buffer = append(buffer, event)
case bc.newSubscriptions <- buffer:
buffer = nil
case bc.wait <- none{}:
}
} else {
select {
case event, ok := <-bc.input:
if !ok {
goto done
}
buffer = append(buffer, event)
case bc.newSubscriptions <- nil:
}
}
}
done:
close(bc.wait)
if len(buffer) > 0 {
bc.newSubscriptions <- buffer
}
close(bc.newSubscriptions)
}
func (bc *brokerConsumer) subscriptionConsumer() {
<-bc.wait // wait for our first piece of work
// the subscriptionConsumer ensures we will get nil right away if no new subscriptions is available
for newSubscriptions := range bc.newSubscriptions {
bc.updateSubscriptions(newSubscriptions)
if len(bc.subscriptions) == 0 {
// We're about to be shut down or we're about to receive more subscriptions.
// Either way, the signal just hasn't propagated to our goroutine yet.
<-bc.wait
continue
}
response, err := bc.fetchNewMessages()
if err != nil {
Logger.Printf("consumer/broker/%d disconnecting due to error processing FetchRequest: %s\n", bc.broker.ID(), err)
bc.abort(err)
return
}
bc.acks.Add(len(bc.subscriptions))
for child := range bc.subscriptions {
child.feeder <- response
}
bc.acks.Wait()
bc.handleResponses()
}
}
func (bc *brokerConsumer) updateSubscriptions(newSubscriptions []*partitionConsumer) {
for _, child := range newSubscriptions {
bc.subscriptions[child] = none{}
Logger.Printf("consumer/broker/%d added subscription to %s/%d\n", bc.broker.ID(), child.topic, child.partition)
}
for child := range bc.subscriptions {
select {
case <-child.dying:
Logger.Printf("consumer/broker/%d closed dead subscription to %s/%d\n", bc.broker.ID(), child.topic, child.partition)
close(child.trigger)
delete(bc.subscriptions, child)
default:
break
}
}
}
func (bc *brokerConsumer) handleResponses() {
// handles the response codes left for us by our subscriptions, and abandons ones that have been closed
for child := range bc.subscriptions {
result := child.responseResult
child.responseResult = nil
switch result {
case nil:
break
case errTimedOut:
Logger.Printf("consumer/broker/%d abandoned subscription to %s/%d because consuming was taking too long\n",
bc.broker.ID(), child.topic, child.partition)
delete(bc.subscriptions, child)
case ErrOffsetOutOfRange:
// there's no point in retrying this it will just fail the same way again
// shut it down and force the user to choose what to do
child.sendError(result)
Logger.Printf("consumer/%s/%d shutting down because %s\n", child.topic, child.partition, result)
close(child.trigger)
delete(bc.subscriptions, child)
case ErrUnknownTopicOrPartition, ErrNotLeaderForPartition, ErrLeaderNotAvailable, ErrReplicaNotAvailable:
// not an error, but does need redispatching
Logger.Printf("consumer/broker/%d abandoned subscription to %s/%d because %s\n",
bc.broker.ID(), child.topic, child.partition, result)
child.trigger <- none{}
delete(bc.subscriptions, child)
default:
// dunno, tell the user and try redispatching
child.sendError(result)
Logger.Printf("consumer/broker/%d abandoned subscription to %s/%d because %s\n",
bc.broker.ID(), child.topic, child.partition, result)
child.trigger <- none{}
delete(bc.subscriptions, child)
}
}
}
func (bc *brokerConsumer) abort(err error) {
bc.consumer.abandonBrokerConsumer(bc)
_ = bc.broker.Close() // we don't care about the error this might return, we already have one
for child := range bc.subscriptions {
child.sendError(err)
child.trigger <- none{}
}
for newSubscriptions := range bc.newSubscriptions {
if len(newSubscriptions) == 0 {
<-bc.wait
continue
}
for _, child := range newSubscriptions {
child.sendError(err)
child.trigger <- none{}
}
}
}
func (bc *brokerConsumer) fetchNewMessages() (*FetchResponse, error) {
request := &FetchRequest{
MinBytes: bc.consumer.conf.Consumer.Fetch.Min,
MaxWaitTime: int32(bc.consumer.conf.Consumer.MaxWaitTime / time.Millisecond),
}
if bc.consumer.conf.Version.IsAtLeast(V0_10_0_0) {
request.Version = 2
}
if bc.consumer.conf.Version.IsAtLeast(V0_10_1_0) {
request.Version = 3
request.MaxBytes = MaxResponseSize
}
for child := range bc.subscriptions {
request.AddBlock(child.topic, child.partition, child.offset, child.fetchSize)
}
return bc.broker.Fetch(request)
}