tile38/vendor/github.com/tidwall/geojson/geometry/ring.go

371 lines
10 KiB
Go
Raw Permalink Normal View History

// Copyright 2018 Joshua J Baker. All rights reserved.
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
package geometry
import (
"math"
)
const complexRingMinPoints = 16
// Ring ...
type Ring = Series
func newRing(points []Point, opts *IndexOptions) Ring {
series := makeSeries(points, true, true, opts)
return &series
}
type ringResult struct {
hit bool // contains/intersects
idx int // edge index
}
func ringContainsPoint(ring Ring, point Point, allowOnEdge bool) ringResult {
2020-03-26 01:07:14 +03:00
var in bool
var idx int
rect := Rect{Point{math.Inf(-1), point.Y}, Point{math.Inf(+1), point.Y}}
if bs, ok := ring.(*baseSeries); ok {
in, idx = ringContainsPointBaseSeries(rect, bs, point, allowOnEdge)
} else {
in, idx = ringContainsPointGeneric(rect, ring, point, allowOnEdge)
}
return ringResult{hit: in, idx: idx}
}
func containsPointSearcher(point Point, allowOnEdge bool, idx *int, in *bool, seg Segment, index int) bool {
// perform a raycast operation on the segments
res := seg.Raycast(point)
if res.On {
*in = allowOnEdge
*idx = index
return false
}
if res.In {
*in = !*in
}
return true
}
// NOTE: Although it may seem that ringContainsPointBaseSeries and ringContainsPointGeneric
// are the same, they are not. Because the type of the `ring` argument is known in
// ringContainsPointBaseSeries, the compiler can prove that the closure passed to
// ring.Search does not escape, and hence save us 3 heap allocations and ~6% runtime.
func ringContainsPointBaseSeries(rect Rect, ring *baseSeries, point Point, allowOnEdge bool) (bool, int) {
var idx = -1
var in bool
2020-03-26 01:07:14 +03:00
ring.Search(
2020-03-26 01:07:14 +03:00
rect,
func(seg Segment, index int) bool {
2020-03-26 01:07:14 +03:00
return containsPointSearcher(point, allowOnEdge, &idx, &in, seg, index)
},
)
2020-03-26 01:07:14 +03:00
return in, idx
}
func ringContainsPointGeneric(rect Rect, ring Ring, point Point, allowOnEdge bool) (bool, int) {
var idx = -1
var in bool
ring.Search(
rect,
func(seg Segment, index int) bool {
return containsPointSearcher(point, allowOnEdge, &idx, &in, seg, index)
},
)
return in, idx
}
func ringIntersectsPoint(ring Ring, point Point, allowOnEdge bool) ringResult {
return ringContainsPoint(ring, point, allowOnEdge)
}
// func segmentsIntersects(seg, other Segment, allowOnEdge bool) bool {
// if seg.IntersectsSegment(other) {
// }
// return false
// }
func ringContainsSegment(ring Ring, seg Segment, allowOnEdge bool) bool {
// fmt.Printf("%v %v\n", seg.A, seg.B)
// Test that segment points are contained in the ring.
resA := ringContainsPoint(ring, seg.A, allowOnEdge)
if !resA.hit {
// seg A is not inside ring
return false
}
if seg.B == seg.A {
return true
}
resB := ringContainsPoint(ring, seg.B, allowOnEdge)
if !resB.hit {
// seg B is not inside ring
return false
}
if ring.Convex() {
// ring is convex so the segment must be contained
return true
}
// The ring is concave so it's possible that the segment crosses over the
// edge of the ring.
if allowOnEdge {
// do some logic around seg points that are on the edge of the ring.
if resA.idx != -1 {
// seg A is on a ring segment
if resB.idx != -1 {
// seg B is on a ring segment
if resB.idx == resA.idx {
// case (3)
// seg A and B share the same ring segment, so it must be
// on the inside.
return true
}
// case (1)
// seg A and seg B are on different segments.
// determine if the space that the seg passes over is inside or
// outside of the ring. To do so we create a ring from the two
// ring segments and check if that ring winding order matches
// the winding order of the ring.
// -- create a ring
rSegA := ring.SegmentAt(resA.idx)
rSegB := ring.SegmentAt(resB.idx)
if rSegA.A == seg.A || rSegA.B == seg.A ||
rSegB.A == seg.A || rSegB.B == seg.A ||
rSegA.A == seg.B || rSegA.B == seg.B ||
rSegB.A == seg.B || rSegB.B == seg.B {
return true
}
// fix the order of the
if resB.idx < resA.idx {
rSegA, rSegB = rSegB, rSegA
}
pts := [5]Point{rSegA.A, rSegA.B, rSegB.A, rSegB.B, rSegA.A}
// -- calc winding order
var cwc float64
for i := 0; i < len(pts)-1; i++ {
a, b := pts[i], pts[i+1]
cwc += (b.X - a.X) * (b.Y + a.Y)
}
clockwise := cwc > 0
if clockwise != ring.Clockwise() {
// -- on the outside
return false
}
// the passover space is on the inside of the ring.
// check if seg intersects any ring segments where A and B are
// not on.
var intersects bool
ring.Search(seg.Rect(), func(seg2 Segment, index int) bool {
if seg.IntersectsSegment(seg2) {
if !seg2.Raycast(seg.A).On && !seg2.Raycast(seg.B).On {
intersects = true
return false
}
}
return true
})
return !intersects
}
// case (4)
// seg A is on a ring segment, but seg B is not.
// check if seg intersects any ring segments where A is not on.
var intersects bool
ring.Search(seg.Rect(), func(seg2 Segment, index int) bool {
if seg.IntersectsSegment(seg2) {
if !seg2.Raycast(seg.A).On {
intersects = true
return false
}
}
return true
})
return !intersects
} else if resB.idx != -1 {
// case (2)
// seg B is on a ring segment, but seg A is not.
// check if seg intersects any ring segments where B is not on.
var intersects bool
ring.Search(seg.Rect(), func(seg2 Segment, index int) bool {
if seg.IntersectsSegment(seg2) {
if !seg2.Raycast(seg.B).On {
intersects = true
return false
}
}
return true
})
return !intersects
}
// case (5) (15)
var intersects bool
ring.Search(seg.Rect(), func(seg2 Segment, index int) bool {
if seg.IntersectsSegment(seg2) {
if !seg.Raycast(seg2.A).On && !seg.Raycast(seg2.B).On {
intersects = true
return false
}
}
return true
})
return !intersects
}
// allowOnEdge is false. (not allow on edge)
var intersects bool
ring.Search(seg.Rect(), func(seg2 Segment, index int) bool {
if seg.IntersectsSegment(seg2) {
// if seg.Raycast(seg2.A).On || seg.Raycast(seg2.B).On {
intersects = true
// return false
// }
return false
}
return true
})
return !intersects
}
// ringIntersectsSegment detect if the segment intersects the ring
func ringIntersectsSegment(ring Ring, seg Segment, allowOnEdge bool) bool {
// Quick check that either point is inside of the ring
if ringContainsPoint(ring, seg.A, allowOnEdge).hit {
return true
}
if ringContainsPoint(ring, seg.B, allowOnEdge).hit {
return true
}
// Neither point A or B is inside the the ring. It's possible that both
// are on the outside and are passing over segments. If the segment passes
// over at least two ring segments then it's intersecting.
var count int
var segAOn bool
var segBOn bool
ring.Search(seg.Rect(), func(seg2 Segment, index int) bool {
if seg.IntersectsSegment(seg2) {
if !allowOnEdge {
// for segments that are not allowed on the edge, extra care
// must be taken.
if !(seg.CollinearPoint(seg2.A) && seg.CollinearPoint(seg2.B)) {
if !segAOn {
if seg.A == seg2.A || seg.A == seg2.B {
segAOn = true
return true
}
}
if !segBOn {
if seg.B == seg2.A || seg.B == seg2.B {
segBOn = true
return true
}
}
count++
}
} else {
count++
}
}
return count < 2
})
return count >= 2
}
func ringContainsRing(ring, other Ring, allowOnEdge bool) bool {
if ring.Empty() || other.Empty() {
return false
}
if other.NumPoints() >= complexRingMinPoints {
// inner ring has a lot of points, and is convex, so let just check if
// the rect ring is fully contained before we do the complicated stuff.
if ringContainsRing(ring, other.Rect(), allowOnEdge) {
return true
}
}
// test if the inner rect does not contain the outer rect
if !ring.Rect().ContainsRect(other.Rect()) {
// not contained so it's not possible for the outer ring to contain
// the inner ring
return false
}
if ring.Convex() {
// outer ring is convex so test that all inner points are inside of
// the outer ring
otherNumPoints := other.NumPoints()
for i := 0; i < otherNumPoints; i++ {
if !ringContainsPoint(ring, other.PointAt(i), allowOnEdge).hit {
// point is on the outside the outer ring
return false
}
}
} else {
// outer ring is concave so let's make sure that all inner segments are
// fully contained inside of the outer ring.
otherNumSegments := other.NumSegments()
for i := 0; i < otherNumSegments; i++ {
if !ringContainsSegment(ring, other.SegmentAt(i), allowOnEdge) {
// fmt.Printf("%v %v\n", ring, other.SegmentAt(i))
return false
}
}
}
return true
}
func ringIntersectsRing(ring, other Ring, allowOnEdge bool) bool {
if ring.Empty() || other.Empty() {
return false
}
// check outer and innter rects intersection first
if !ring.Rect().IntersectsRect(other.Rect()) {
return false
}
if other.Rect().Area() > ring.Rect().Area() {
// swap the rings so that the inner ring is smaller than the outer ring
ring, other = other, ring
}
otherNumSegments := other.NumSegments()
for i := 0; i < otherNumSegments; i++ {
if ringIntersectsSegment(ring, other.SegmentAt(i), allowOnEdge) {
return true
}
}
return false
}
func ringContainsLine(ring Ring, line *Line, allowOnEdge bool) bool {
// shares the same logic
return ringContainsRing(ring, Ring(&line.baseSeries), allowOnEdge)
}
func ringIntersectsLine(ring Ring, line *Line, allowOnEdge bool) bool {
if ring.Empty() || line.Empty() {
return false
}
// check outer and innter rects intersection first
if !ring.Rect().IntersectsRect(line.Rect()) {
return false
}
// check if any points are inside ring
lineNumPoints := line.NumPoints()
for i := 0; i < lineNumPoints; i++ {
if ringContainsPoint(ring, line.PointAt(i), allowOnEdge).hit {
return true
}
}
lineNumSegments := line.NumSegments()
for i := 0; i < lineNumSegments; i++ {
if ringIntersectsSegment(ring, line.SegmentAt(i), allowOnEdge) {
return true
}
}
return false
}