//generated; DO NOT EDIT! /* TITLE R-TREES: A DYNAMIC INDEX STRUCTURE FOR SPATIAL SEARCHING DESCRIPTION A Go version of the RTree algorithm. For more information please read the comments in rtree.go AUTHORS * 1983 Original algorithm and test code by Antonin Guttman and Michael Stonebraker, UC Berkely * 1994 ANCI C ported from original test code by Melinda Green - melinda@superliminal.com * 1995 Sphere volume fix for degeneracy problem submitted by Paul Brook * 2004 Templated C++ port by Greg Douglas * 2016 Go port by Josh Baker LICENSE: Entirely free for all uses. Enjoy! */ // Implementation of RTree, a multidimensional bounding rectangle tree. package rtree import "math" func Min(a, b float64) float64 { if a < b { return a } return b } func Max(a, b float64) float64 { if a > b { return a } return b } func ASSERT(condition bool) { if _DEBUG && !condition { panic("assertion failed") } } const ( _DEBUG = true NUMDIMS = 4 MAXNODES = 8 MINNODES = MAXNODES / 2 USE_SPHERICAL_VOLUME = true // Better split classification, may be slower on some systems ) type ResultCallback func(dataID interface{}, context interface{}) bool var unitSphereVolume float64 func init() { // Precomputed volumes of the unit spheres for the first few dimensions unitSphereVolume = []float64{ 0.000000, 2.000000, 3.141593, // Dimension 0,1,2 4.188790, 4.934802, 5.263789, // Dimension 3,4,5 5.167713, 4.724766, 4.058712, // Dimension 6,7,8 3.298509, 2.550164, 1.884104, // Dimension 9,10,11 1.335263, 0.910629, 0.599265, // Dimension 12,13,14 0.381443, 0.235331, 0.140981, // Dimension 15,16,17 0.082146, 0.046622, 0.025807, // Dimension 18,19,20 }[NUMDIMS] } type RTree struct { root *Node ///< Root of tree unitSphereVolume float64 ///< Unit sphere constant for required number of dimensions } /// Minimal bounding rectangle (n-dimensional) type Rect struct { min [NUMDIMS]float64 ///< Min dimensions of bounding box max [NUMDIMS]float64 ///< Max dimensions of bounding box } /// May be data or may be another subtree /// The parents level determines this. /// If the parents level is 0, then this is data type Branch struct { rect Rect ///< Bounds child *Node ///< Child node data interface{} ///< Data Id or Ptr } /// Node for each branch level type Node struct { count int ///< Count level int ///< Leaf is zero, others positive branch [MAXNODES]Branch ///< Branch } func (node *Node) IsInternalNode() bool { return (node.level > 0) // Not a leaf, but a internal node } func (node *Node) IsLeaf() bool { return (node.level == 0) // A leaf, contains data } /// A link list of nodes for reinsertion after a delete operation type ListNode struct { next *ListNode ///< Next in list node *Node ///< Node } const NOT_TAKEN = -1 // indicates that position /// Variables for finding a split partition type PartitionVars struct { partition [MAXNODES + 1]int total int minFill int count [2]int cover [2]Rect area [2]float64 branchBuf [MAXNODES + 1]Branch branchCount int coverSplit Rect coverSplitArea float64 } func NewRTree() *RTree { ASSERT(MAXNODES > MINNODES) ASSERT(MINNODES > 0) // We only support machine word size simple data type eg. integer index or object pointer. // Since we are storing as union with non data branch //ASSERT(sizeof(DATATYPE) == sizeof(void*) || sizeof(DATATYPE) == sizeof(int)); return &RTree{ root: &Node{}, } } /// Insert entry /// \param a_min Min of bounding rect /// \param a_max Max of bounding rect /// \param a_dataId Positive Id of data. Maybe zero, but negative numbers not allowed. func (tr *RTree) Insert(min, max [NUMDIMS]float64, dataId interface{}) { if _DEBUG { for index := 0; index < NUMDIMS; index++ { ASSERT(min[index] <= max[index]) } } //_DEBUG var branch Branch branch.data = dataId branch.child = nil for axis := 0; axis < NUMDIMS; axis++ { branch.rect.min[axis] = min[axis] branch.rect.max[axis] = max[axis] } InsertRect(&branch, &tr.root, 0) } /// Remove entry /// \param a_min Min of bounding rect /// \param a_max Max of bounding rect /// \param a_dataId Positive Id of data. Maybe zero, but negative numbers not allowed. func (tr *RTree) Remove(min, max [NUMDIMS]float64, dataId interface{}) { if _DEBUG { for index := 0; index < NUMDIMS; index++ { ASSERT(min[index] <= max[index]) } } //_DEBUG var rect Rect for axis := 0; axis < NUMDIMS; axis++ { rect.min[axis] = min[axis] rect.max[axis] = max[axis] } RemoveRect(&rect, dataId, &tr.root) } /// Find all within search rectangle /// \param a_min Min of search bounding rect /// \param a_max Max of search bounding rect /// \param a_searchResult Search result array. Caller should set grow size. Function will reset, not append to array. /// \param a_resultCallback Callback function to return result. Callback should return 'true' to continue searching /// \param a_context User context to pass as parameter to a_resultCallback /// \return Returns the number of entries found func (tr *RTree) Search(min, max [NUMDIMS]float64, resultCallback ResultCallback, context interface{}) int { if _DEBUG { for index := 0; index < NUMDIMS; index++ { ASSERT(min[index] <= max[index]) } } //_DEBUG var rect Rect for axis := 0; axis < NUMDIMS; axis++ { rect.min[axis] = min[axis] rect.max[axis] = max[axis] } // NOTE: May want to return search result another way, perhaps returning the number of found elements here. foundCount := 0 Search(tr.root, &rect, &foundCount, resultCallback, context) return foundCount } /// Count the data elements in this container. This is slow as no internal counter is maintained. func (tr *RTree) Count() int { var count int CountRec(tr.root, &count) return count } func CountRec(node *Node, count *int) { if node.IsInternalNode() { // not a leaf node for index := 0; index < node.count; index++ { CountRec(node.branch[index].child, count) } } else { // A leaf node *count += node.count } } /// Remove all entries from tree func (tr *RTree) RemoveAll() { // Delete all existing nodes tr.root = &Node{} } func InitNode(node *Node) { node.count = 0 node.level = -1 } func InitRect(rect *Rect) { for index := 0; index < NUMDIMS; index++ { rect.min[index] = 0 rect.max[index] = 0 } } // Inserts a new data rectangle into the index structure. // Recursively descends tree, propagates splits back up. // Returns 0 if node was not split. Old node updated. // If node was split, returns 1 and sets the pointer pointed to by // new_node to point to the new node. Old node updated to become one of two. // The level argument specifies the number of steps up from the leaf // level to insert; e.g. a data rectangle goes in at level = 0. func InsertRectRec(branch *Branch, node *Node, newNode **Node, level int) bool { ASSERT(node != nil && newNode != nil) ASSERT(level >= 0 && level <= node.level) // recurse until we reach the correct level for the new record. data records // will always be called with a_level == 0 (leaf) if node.level > level { // Still above level for insertion, go down tree recursively var otherNode *Node //var newBranch Branch // find the optimal branch for this record index := PickBranch(&branch.rect, node) // recursively insert this record into the picked branch childWasSplit := InsertRectRec(branch, node.branch[index].child, &otherNode, level) if !childWasSplit { // Child was not split. Merge the bounding box of the new record with the // existing bounding box node.branch[index].rect = CombineRect(&branch.rect, &(node.branch[index].rect)) return false } else { // Child was split. The old branches are now re-partitioned to two nodes // so we have to re-calculate the bounding boxes of each node node.branch[index].rect = NodeCover(node.branch[index].child) var newBranch Branch newBranch.child = otherNode newBranch.rect = NodeCover(otherNode) // The old node is already a child of a_node. Now add the newly-created // node to a_node as well. a_node might be split because of that. return AddBranch(&newBranch, node, newNode) } } else if node.level == level { // We have reached level for insertion. Add rect, split if necessary return AddBranch(branch, node, newNode) } else { // Should never occur ASSERT(false) return false } } // Insert a data rectangle into an index structure. // InsertRect provides for splitting the root; // returns 1 if root was split, 0 if it was not. // The level argument specifies the number of steps up from the leaf // level to insert; e.g. a data rectangle goes in at level = 0. // InsertRect2 does the recursion. // func InsertRect(branch *Branch, root **Node, level int) bool { ASSERT(root != nil) ASSERT(level >= 0 && level <= (*root).level) if _DEBUG { for index := 0; index < NUMDIMS; index++ { ASSERT(branch.rect.min[index] <= branch.rect.max[index]) } } //_DEBUG var newNode *Node if InsertRectRec(branch, *root, &newNode, level) { // Root split // Grow tree taller and new root newRoot := &Node{} newRoot.level = (*root).level + 1 var newBranch Branch // add old root node as a child of the new root newBranch.rect = NodeCover(*root) newBranch.child = *root AddBranch(&newBranch, newRoot, nil) // add the split node as a child of the new root newBranch.rect = NodeCover(newNode) newBranch.child = newNode AddBranch(&newBranch, newRoot, nil) // set the new root as the root node *root = newRoot return true } return false } // Find the smallest rectangle that includes all rectangles in branches of a node. func NodeCover(node *Node) Rect { ASSERT(node != nil) rect := node.branch[0].rect for index := 1; index < node.count; index++ { rect = CombineRect(&rect, &(node.branch[index].rect)) } return rect } // Add a branch to a node. Split the node if necessary. // Returns 0 if node not split. Old node updated. // Returns 1 if node split, sets *new_node to address of new node. // Old node updated, becomes one of two. func AddBranch(branch *Branch, node *Node, newNode **Node) bool { ASSERT(branch != nil) ASSERT(node != nil) if node.count < MAXNODES { // Split won't be necessary node.branch[node.count] = *branch node.count++ return false } else { ASSERT(newNode != nil) SplitNode(node, branch, newNode) return true } } // Disconnect a dependent node. // Caller must return (or stop using iteration index) after this as count has changed func DisconnectBranch(node *Node, index int) { ASSERT(node != nil && (index >= 0) && (index < MAXNODES)) ASSERT(node.count > 0) // Remove element by swapping with the last element to prevent gaps in array node.branch[index] = node.branch[node.count-1] node.count-- } // Pick a branch. Pick the one that will need the smallest increase // in area to accomodate the new rectangle. This will result in the // least total area for the covering rectangles in the current node. // In case of a tie, pick the one which was smaller before, to get // the best resolution when searching. func PickBranch(rect *Rect, node *Node) int { ASSERT(rect != nil && node != nil) var firstTime bool = true var increase float64 var bestIncr float64 = -1 var area float64 var bestArea float64 var best int var tempRect Rect for index := 0; index < node.count; index++ { curRect := &node.branch[index].rect area = CalcRectVolume(curRect) tempRect = CombineRect(rect, curRect) increase = CalcRectVolume(&tempRect) - area if (increase < bestIncr) || firstTime { best = index bestArea = area bestIncr = increase firstTime = false } else if (increase == bestIncr) && (area < bestArea) { best = index bestArea = area bestIncr = increase } } return best } // Combine two rectangles into larger one containing both func CombineRect(rectA, rectB *Rect) Rect { ASSERT(rectA != nil && rectB != nil) var newRect Rect for index := 0; index < NUMDIMS; index++ { newRect.min[index] = Min(rectA.min[index], rectB.min[index]) newRect.max[index] = Max(rectA.max[index], rectB.max[index]) } return newRect } // Split a node. // Divides the nodes branches and the extra one between two nodes. // Old node is one of the new ones, and one really new one is created. // Tries more than one method for choosing a partition, uses best result. func SplitNode(node *Node, branch *Branch, newNode **Node) { ASSERT(node != nil) ASSERT(branch != nil) // Could just use local here, but member or external is faster since it is reused var localVars PartitionVars parVars := &localVars // Load all the branches into a buffer, initialize old node GetBranches(node, branch, parVars) // Find partition ChoosePartition(parVars, MINNODES) // Create a new node to hold (about) half of the branches *newNode = &Node{} (*newNode).level = node.level // Put branches from buffer into 2 nodes according to the chosen partition node.count = 0 LoadNodes(node, *newNode, parVars) ASSERT((node.count + (*newNode).count) == parVars.total) } // Calculate the n-dimensional volume of a rectangle func RectVolume(rect *Rect) float64 { ASSERT(rect != nil) var volume float64 = 1 for index := 0; index < NUMDIMS; index++ { volume *= rect.max[index] - rect.min[index] } ASSERT(volume >= 0) return volume } // The exact volume of the bounding sphere for the given Rect func RectSphericalVolume(rect *Rect) float64 { ASSERT(rect != nil) var sumOfSquares float64 = 0 var radius float64 for index := 0; index < NUMDIMS; index++ { halfExtent := (rect.max[index] - rect.min[index]) * 0.5 sumOfSquares += halfExtent * halfExtent } radius = math.Sqrt(sumOfSquares) // Pow maybe slow, so test for common dims like 2,3 and just use x*x, x*x*x. if NUMDIMS == 4 { return (radius * radius * radius * radius * unitSphereVolume) } else if NUMDIMS == 3 { return (radius * radius * radius * unitSphereVolume) } else if NUMDIMS == 2 { return (radius * radius * unitSphereVolume) } else { return (math.Pow(radius, NUMDIMS) * unitSphereVolume) } } // Use one of the methods to calculate retangle volume func CalcRectVolume(rect *Rect) float64 { if USE_SPHERICAL_VOLUME { return RectSphericalVolume(rect) // Slower but helps certain merge cases } else { // RTREE_USE_SPHERICAL_VOLUME return RectVolume(rect) // Faster but can cause poor merges } // RTREE_USE_SPHERICAL_VOLUME } // Load branch buffer with branches from full node plus the extra branch. func GetBranches(node *Node, branch *Branch, parVars *PartitionVars) { ASSERT(node != nil) ASSERT(branch != nil) ASSERT(node.count == MAXNODES) // Load the branch buffer for index := 0; index < MAXNODES; index++ { parVars.branchBuf[index] = node.branch[index] } parVars.branchBuf[MAXNODES] = *branch parVars.branchCount = MAXNODES + 1 // Calculate rect containing all in the set parVars.coverSplit = parVars.branchBuf[0].rect for index := 1; index < MAXNODES+1; index++ { parVars.coverSplit = CombineRect(&parVars.coverSplit, &parVars.branchBuf[index].rect) } parVars.coverSplitArea = CalcRectVolume(&parVars.coverSplit) } // Method #0 for choosing a partition: // As the seeds for the two groups, pick the two rects that would waste the // most area if covered by a single rectangle, i.e. evidently the worst pair // to have in the same group. // Of the remaining, one at a time is chosen to be put in one of the two groups. // The one chosen is the one with the greatest difference in area expansion // depending on which group - the rect most strongly attracted to one group // and repelled from the other. // If one group gets too full (more would force other group to violate min // fill requirement) then other group gets the rest. // These last are the ones that can go in either group most easily. func ChoosePartition(parVars *PartitionVars, minFill int) { ASSERT(parVars != nil) var biggestDiff float64 var group, chosen, betterGroup int InitParVars(parVars, parVars.branchCount, minFill) PickSeeds(parVars) for ((parVars.count[0] + parVars.count[1]) < parVars.total) && (parVars.count[0] < (parVars.total - parVars.minFill)) && (parVars.count[1] < (parVars.total - parVars.minFill)) { biggestDiff = -1 for index := 0; index < parVars.total; index++ { if NOT_TAKEN == parVars.partition[index] { curRect := &parVars.branchBuf[index].rect rect0 := CombineRect(curRect, &parVars.cover[0]) rect1 := CombineRect(curRect, &parVars.cover[1]) growth0 := CalcRectVolume(&rect0) - parVars.area[0] growth1 := CalcRectVolume(&rect1) - parVars.area[1] diff := growth1 - growth0 if diff >= 0 { group = 0 } else { group = 1 diff = -diff } if diff > biggestDiff { biggestDiff = diff chosen = index betterGroup = group } else if (diff == biggestDiff) && (parVars.count[group] < parVars.count[betterGroup]) { chosen = index betterGroup = group } } } Classify(chosen, betterGroup, parVars) } // If one group too full, put remaining rects in the other if (parVars.count[0] + parVars.count[1]) < parVars.total { if parVars.count[0] >= parVars.total-parVars.minFill { group = 1 } else { group = 0 } for index := 0; index < parVars.total; index++ { if NOT_TAKEN == parVars.partition[index] { Classify(index, group, parVars) } } } ASSERT((parVars.count[0] + parVars.count[1]) == parVars.total) ASSERT((parVars.count[0] >= parVars.minFill) && (parVars.count[1] >= parVars.minFill)) } // Copy branches from the buffer into two nodes according to the partition. func LoadNodes(nodeA, nodeB *Node, parVars *PartitionVars) { ASSERT(nodeA != nil) ASSERT(nodeB != nil) ASSERT(parVars != nil) for index := 0; index < parVars.total; index++ { ASSERT(parVars.partition[index] == 0 || parVars.partition[index] == 1) targetNodeIndex := parVars.partition[index] targetNodes := []*Node{nodeA, nodeB} // It is assured that AddBranch here will not cause a node split. nodeWasSplit := AddBranch(&parVars.branchBuf[index], targetNodes[targetNodeIndex], nil) ASSERT(!nodeWasSplit) } } // Initialize a PartitionVars structure. func InitParVars(parVars *PartitionVars, maxRects, minFill int) { ASSERT(parVars != nil) parVars.count[0] = 0 parVars.count[1] = 0 parVars.area[0] = 0 parVars.area[1] = 0 parVars.total = maxRects parVars.minFill = minFill for index := 0; index < maxRects; index++ { parVars.partition[index] = NOT_TAKEN } } func PickSeeds(parVars *PartitionVars) { var seed0, seed1 int var worst, waste float64 var area [MAXNODES + 1]float64 for index := 0; index < parVars.total; index++ { area[index] = CalcRectVolume(&parVars.branchBuf[index].rect) } worst = -parVars.coverSplitArea - 1 for indexA := 0; indexA < parVars.total-1; indexA++ { for indexB := indexA + 1; indexB < parVars.total; indexB++ { oneRect := CombineRect(&parVars.branchBuf[indexA].rect, &parVars.branchBuf[indexB].rect) waste = CalcRectVolume(&oneRect) - area[indexA] - area[indexB] if waste > worst { worst = waste seed0 = indexA seed1 = indexB } } } Classify(seed0, 0, parVars) Classify(seed1, 1, parVars) } // Put a branch in one of the groups. func Classify(index, group int, parVars *PartitionVars) { ASSERT(parVars != nil) ASSERT(NOT_TAKEN == parVars.partition[index]) parVars.partition[index] = group // Calculate combined rect if parVars.count[group] == 0 { parVars.cover[group] = parVars.branchBuf[index].rect } else { parVars.cover[group] = CombineRect(&parVars.branchBuf[index].rect, &parVars.cover[group]) } // Calculate volume of combined rect parVars.area[group] = CalcRectVolume(&parVars.cover[group]) parVars.count[group]++ } // Delete a data rectangle from an index structure. // Pass in a pointer to a Rect, the tid of the record, ptr to ptr to root node. // Returns 1 if record not found, 0 if success. // RemoveRect provides for eliminating the root. func RemoveRect(rect *Rect, id interface{}, root **Node) bool { ASSERT(rect != nil && root != nil) ASSERT(*root != nil) var reInsertList *ListNode if !RemoveRectRec(rect, id, *root, &reInsertList) { // Found and deleted a data item // Reinsert any branches from eliminated nodes for reInsertList != nil { tempNode := reInsertList.node for index := 0; index < tempNode.count; index++ { // TODO go over this code. should I use (tempNode->m_level - 1)? InsertRect(&tempNode.branch[index], root, tempNode.level) } reInsertList = reInsertList.next } // Check for redundant root (not leaf, 1 child) and eliminate TODO replace // if with while? In case there is a whole branch of redundant roots... if (*root).count == 1 && (*root).IsInternalNode() { tempNode := (*root).branch[0].child ASSERT(tempNode != nil) *root = tempNode } return false } else { return true } } // Delete a rectangle from non-root part of an index structure. // Called by RemoveRect. Descends tree recursively, // merges branches on the way back up. // Returns 1 if record not found, 0 if success. func RemoveRectRec(rect *Rect, id interface{}, node *Node, listNode **ListNode) bool { ASSERT(rect != nil && node != nil && listNode != nil) ASSERT(node.level >= 0) if node.IsInternalNode() { // not a leaf node for index := 0; index < node.count; index++ { if Overlap(rect, &(node.branch[index].rect)) { if !RemoveRectRec(rect, id, node.branch[index].child, listNode) { if node.branch[index].child.count >= MINNODES { // child removed, just resize parent rect node.branch[index].rect = NodeCover(node.branch[index].child) } else { // child removed, not enough entries in node, eliminate node ReInsert(node.branch[index].child, listNode) DisconnectBranch(node, index) // Must return after this call as count has changed } return false } } } return true } else { // A leaf node for index := 0; index < node.count; index++ { if node.branch[index].data == id { DisconnectBranch(node, index) // Must return after this call as count has changed return false } } return true } } // Decide whether two rectangles overlap. func Overlap(rectA, rectB *Rect) bool { ASSERT(rectA != nil && rectB != nil) for index := 0; index < NUMDIMS; index++ { if rectA.min[index] > rectB.max[index] || rectB.min[index] > rectA.max[index] { return false } } return true } // Add a node to the reinsertion list. All its branches will later // be reinserted into the index structure. func ReInsert(node *Node, listNode **ListNode) { newListNode := &ListNode{} newListNode.node = node newListNode.next = *listNode *listNode = newListNode } // Search in an index tree or subtree for all data retangles that overlap the argument rectangle. func Search(node *Node, rect *Rect, foundCount *int, resultCallback ResultCallback, context interface{}) bool { ASSERT(node != nil) ASSERT(node.level >= 0) ASSERT(rect != nil) if node.IsInternalNode() { // This is an internal node in the tree for index := 0; index < node.count; index++ { if Overlap(rect, &node.branch[index].rect) { if !Search(node.branch[index].child, rect, foundCount, resultCallback, context) { // The callback indicated to stop searching return false } } } } else { // This is a leaf node for index := 0; index < node.count; index++ { if Overlap(rect, &node.branch[index].rect) { id := node.branch[index].data // NOTE: There are different ways to return results. Here's where to modify *foundCount++ if !resultCallback(id, context) { return false // Don't continue searching } } } } return true // Continue searching }