mirror of https://github.com/go-redis/redis.git
815 lines
18 KiB
Go
815 lines
18 KiB
Go
package redis
|
|
|
|
import (
|
|
"context"
|
|
"crypto/tls"
|
|
"errors"
|
|
"fmt"
|
|
"net"
|
|
"strconv"
|
|
"sync"
|
|
"sync/atomic"
|
|
"time"
|
|
|
|
"github.com/cespare/xxhash/v2"
|
|
rendezvous "github.com/dgryski/go-rendezvous" //nolint
|
|
|
|
"github.com/go-redis/redis/v9/internal"
|
|
"github.com/go-redis/redis/v9/internal/hashtag"
|
|
"github.com/go-redis/redis/v9/internal/pool"
|
|
"github.com/go-redis/redis/v9/internal/rand"
|
|
)
|
|
|
|
var errRingShardsDown = errors.New("redis: all ring shards are down")
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
type ConsistentHash interface {
|
|
Get(string) string
|
|
}
|
|
|
|
type rendezvousWrapper struct {
|
|
*rendezvous.Rendezvous
|
|
}
|
|
|
|
func (w rendezvousWrapper) Get(key string) string {
|
|
return w.Lookup(key)
|
|
}
|
|
|
|
func newRendezvous(shards []string) ConsistentHash {
|
|
return rendezvousWrapper{rendezvous.New(shards, xxhash.Sum64String)}
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
// RingOptions are used to configure a ring client and should be
|
|
// passed to NewRing.
|
|
type RingOptions struct {
|
|
// Map of name => host:port addresses of ring shards.
|
|
Addrs map[string]string
|
|
|
|
// NewClient creates a shard client with provided options.
|
|
NewClient func(opt *Options) *Client
|
|
|
|
// Frequency of PING commands sent to check shards availability.
|
|
// Shard is considered down after 3 subsequent failed checks.
|
|
HeartbeatFrequency time.Duration
|
|
|
|
// NewConsistentHash returns a consistent hash that is used
|
|
// to distribute keys across the shards.
|
|
//
|
|
// See https://medium.com/@dgryski/consistent-hashing-algorithmic-tradeoffs-ef6b8e2fcae8
|
|
// for consistent hashing algorithmic tradeoffs.
|
|
NewConsistentHash func(shards []string) ConsistentHash
|
|
|
|
// Following options are copied from Options struct.
|
|
|
|
Dialer func(ctx context.Context, network, addr string) (net.Conn, error)
|
|
OnConnect func(ctx context.Context, cn *Conn) error
|
|
|
|
Username string
|
|
Password string
|
|
DB int
|
|
|
|
MaxRetries int
|
|
MinRetryBackoff time.Duration
|
|
MaxRetryBackoff time.Duration
|
|
|
|
DialTimeout time.Duration
|
|
ReadTimeout time.Duration
|
|
WriteTimeout time.Duration
|
|
|
|
// PoolFIFO uses FIFO mode for each node connection pool GET/PUT (default LIFO).
|
|
PoolFIFO bool
|
|
|
|
PoolSize int
|
|
PoolTimeout time.Duration
|
|
MinIdleConns int
|
|
MaxIdleConns int
|
|
ConnMaxIdleTime time.Duration
|
|
ConnMaxLifetime time.Duration
|
|
|
|
TLSConfig *tls.Config
|
|
Limiter Limiter
|
|
}
|
|
|
|
func (opt *RingOptions) init() {
|
|
if opt.NewClient == nil {
|
|
opt.NewClient = func(opt *Options) *Client {
|
|
return NewClient(opt)
|
|
}
|
|
}
|
|
|
|
if opt.HeartbeatFrequency == 0 {
|
|
opt.HeartbeatFrequency = 500 * time.Millisecond
|
|
}
|
|
|
|
if opt.NewConsistentHash == nil {
|
|
opt.NewConsistentHash = newRendezvous
|
|
}
|
|
|
|
if opt.MaxRetries == -1 {
|
|
opt.MaxRetries = 0
|
|
} else if opt.MaxRetries == 0 {
|
|
opt.MaxRetries = 3
|
|
}
|
|
switch opt.MinRetryBackoff {
|
|
case -1:
|
|
opt.MinRetryBackoff = 0
|
|
case 0:
|
|
opt.MinRetryBackoff = 8 * time.Millisecond
|
|
}
|
|
switch opt.MaxRetryBackoff {
|
|
case -1:
|
|
opt.MaxRetryBackoff = 0
|
|
case 0:
|
|
opt.MaxRetryBackoff = 512 * time.Millisecond
|
|
}
|
|
}
|
|
|
|
func (opt *RingOptions) clientOptions() *Options {
|
|
return &Options{
|
|
Dialer: opt.Dialer,
|
|
OnConnect: opt.OnConnect,
|
|
|
|
Username: opt.Username,
|
|
Password: opt.Password,
|
|
DB: opt.DB,
|
|
|
|
MaxRetries: -1,
|
|
|
|
DialTimeout: opt.DialTimeout,
|
|
ReadTimeout: opt.ReadTimeout,
|
|
WriteTimeout: opt.WriteTimeout,
|
|
|
|
PoolFIFO: opt.PoolFIFO,
|
|
PoolSize: opt.PoolSize,
|
|
PoolTimeout: opt.PoolTimeout,
|
|
MinIdleConns: opt.MinIdleConns,
|
|
MaxIdleConns: opt.MaxIdleConns,
|
|
ConnMaxIdleTime: opt.ConnMaxIdleTime,
|
|
ConnMaxLifetime: opt.ConnMaxLifetime,
|
|
|
|
TLSConfig: opt.TLSConfig,
|
|
Limiter: opt.Limiter,
|
|
}
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
type ringShard struct {
|
|
Client *Client
|
|
down int32
|
|
addr string
|
|
}
|
|
|
|
func newRingShard(opt *RingOptions, addr string) *ringShard {
|
|
clopt := opt.clientOptions()
|
|
clopt.Addr = addr
|
|
|
|
return &ringShard{
|
|
Client: opt.NewClient(clopt),
|
|
addr: addr,
|
|
}
|
|
}
|
|
|
|
func (shard *ringShard) String() string {
|
|
var state string
|
|
if shard.IsUp() {
|
|
state = "up"
|
|
} else {
|
|
state = "down"
|
|
}
|
|
return fmt.Sprintf("%s is %s", shard.Client, state)
|
|
}
|
|
|
|
func (shard *ringShard) IsDown() bool {
|
|
const threshold = 3
|
|
return atomic.LoadInt32(&shard.down) >= threshold
|
|
}
|
|
|
|
func (shard *ringShard) IsUp() bool {
|
|
return !shard.IsDown()
|
|
}
|
|
|
|
// Vote votes to set shard state and returns true if state was changed.
|
|
func (shard *ringShard) Vote(up bool) bool {
|
|
if up {
|
|
changed := shard.IsDown()
|
|
atomic.StoreInt32(&shard.down, 0)
|
|
return changed
|
|
}
|
|
|
|
if shard.IsDown() {
|
|
return false
|
|
}
|
|
|
|
atomic.AddInt32(&shard.down, 1)
|
|
return shard.IsDown()
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
type ringSharding struct {
|
|
opt *RingOptions
|
|
|
|
mu sync.RWMutex
|
|
shards *ringShards
|
|
closed bool
|
|
hash ConsistentHash
|
|
numShard int
|
|
onNewNode []func(rdb *Client)
|
|
}
|
|
|
|
type ringShards struct {
|
|
m map[string]*ringShard
|
|
list []*ringShard
|
|
}
|
|
|
|
func newRingSharding(opt *RingOptions) *ringSharding {
|
|
c := &ringSharding{
|
|
opt: opt,
|
|
}
|
|
c.SetAddrs(opt.Addrs)
|
|
|
|
return c
|
|
}
|
|
|
|
func (c *ringSharding) OnNewNode(fn func(rdb *Client)) {
|
|
c.mu.Lock()
|
|
c.onNewNode = append(c.onNewNode, fn)
|
|
c.mu.Unlock()
|
|
}
|
|
|
|
// SetAddrs replaces the shards in use, such that you can increase and
|
|
// decrease number of shards, that you use. It will reuse shards that
|
|
// existed before and close the ones that will not be used anymore.
|
|
func (c *ringSharding) SetAddrs(addrs map[string]string) {
|
|
c.mu.Lock()
|
|
|
|
if c.closed {
|
|
c.mu.Unlock()
|
|
return
|
|
}
|
|
|
|
shards, cleanup := c.newRingShards(addrs, c.shards)
|
|
c.shards = shards
|
|
c.mu.Unlock()
|
|
|
|
c.rebalance()
|
|
cleanup()
|
|
}
|
|
|
|
func (c *ringSharding) newRingShards(
|
|
addrs map[string]string, existingShards *ringShards,
|
|
) (*ringShards, func()) {
|
|
shardMap := make(map[string]*ringShard) // indexed by addr
|
|
unusedShards := make(map[string]*ringShard) // indexed by addr
|
|
|
|
if existingShards != nil {
|
|
for _, shard := range existingShards.list {
|
|
addr := shard.Client.opt.Addr
|
|
shardMap[addr] = shard
|
|
unusedShards[addr] = shard
|
|
}
|
|
}
|
|
|
|
shards := &ringShards{
|
|
m: make(map[string]*ringShard),
|
|
}
|
|
|
|
for name, addr := range addrs {
|
|
if shard, ok := shardMap[addr]; ok {
|
|
shards.m[name] = shard
|
|
delete(unusedShards, addr)
|
|
} else {
|
|
shard := newRingShard(c.opt, addr)
|
|
shards.m[name] = shard
|
|
|
|
for _, fn := range c.onNewNode {
|
|
fn(shard.Client)
|
|
}
|
|
}
|
|
}
|
|
|
|
for _, shard := range shards.m {
|
|
shards.list = append(shards.list, shard)
|
|
}
|
|
|
|
return shards, func() {
|
|
for addr, shard := range unusedShards {
|
|
if err := shard.Client.Close(); err != nil {
|
|
internal.Logger.Printf(context.Background(), "shard.Close %s failed: %s", addr, err)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
func (c *ringSharding) List() []*ringShard {
|
|
var list []*ringShard
|
|
|
|
c.mu.RLock()
|
|
if !c.closed {
|
|
list = c.shards.list
|
|
}
|
|
c.mu.RUnlock()
|
|
|
|
return list
|
|
}
|
|
|
|
func (c *ringSharding) Hash(key string) string {
|
|
key = hashtag.Key(key)
|
|
|
|
var hash string
|
|
|
|
c.mu.RLock()
|
|
defer c.mu.RUnlock()
|
|
|
|
if c.numShard > 0 {
|
|
hash = c.hash.Get(key)
|
|
}
|
|
|
|
return hash
|
|
}
|
|
|
|
func (c *ringSharding) GetByKey(key string) (*ringShard, error) {
|
|
key = hashtag.Key(key)
|
|
|
|
c.mu.RLock()
|
|
defer c.mu.RUnlock()
|
|
|
|
if c.closed {
|
|
return nil, pool.ErrClosed
|
|
}
|
|
|
|
if c.numShard == 0 {
|
|
return nil, errRingShardsDown
|
|
}
|
|
|
|
shardName := c.hash.Get(key)
|
|
if shardName == "" {
|
|
return nil, errRingShardsDown
|
|
}
|
|
return c.shards.m[shardName], nil
|
|
}
|
|
|
|
func (c *ringSharding) GetByName(shardName string) (*ringShard, error) {
|
|
if shardName == "" {
|
|
return c.Random()
|
|
}
|
|
|
|
c.mu.RLock()
|
|
defer c.mu.RUnlock()
|
|
|
|
return c.shards.m[shardName], nil
|
|
}
|
|
|
|
func (c *ringSharding) Random() (*ringShard, error) {
|
|
return c.GetByKey(strconv.Itoa(rand.Int()))
|
|
}
|
|
|
|
// Heartbeat monitors state of each shard in the ring.
|
|
func (c *ringSharding) Heartbeat(ctx context.Context, frequency time.Duration) {
|
|
ticker := time.NewTicker(frequency)
|
|
defer ticker.Stop()
|
|
|
|
for {
|
|
select {
|
|
case <-ticker.C:
|
|
var rebalance bool
|
|
|
|
for _, shard := range c.List() {
|
|
err := shard.Client.Ping(ctx).Err()
|
|
isUp := err == nil || err == pool.ErrPoolTimeout
|
|
if shard.Vote(isUp) {
|
|
internal.Logger.Printf(ctx, "ring shard state changed: %s", shard)
|
|
rebalance = true
|
|
}
|
|
}
|
|
|
|
if rebalance {
|
|
c.rebalance()
|
|
}
|
|
case <-ctx.Done():
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
// rebalance removes dead shards from the Ring.
|
|
func (c *ringSharding) rebalance() {
|
|
c.mu.RLock()
|
|
shards := c.shards
|
|
c.mu.RUnlock()
|
|
|
|
if shards == nil {
|
|
return
|
|
}
|
|
|
|
liveShards := make([]string, 0, len(shards.m))
|
|
|
|
for name, shard := range shards.m {
|
|
if shard.IsUp() {
|
|
liveShards = append(liveShards, name)
|
|
}
|
|
}
|
|
|
|
hash := c.opt.NewConsistentHash(liveShards)
|
|
|
|
c.mu.Lock()
|
|
if !c.closed {
|
|
c.hash = hash
|
|
c.numShard = len(liveShards)
|
|
}
|
|
c.mu.Unlock()
|
|
}
|
|
|
|
func (c *ringSharding) Len() int {
|
|
c.mu.RLock()
|
|
defer c.mu.RUnlock()
|
|
|
|
return c.numShard
|
|
}
|
|
|
|
func (c *ringSharding) Close() error {
|
|
c.mu.Lock()
|
|
defer c.mu.Unlock()
|
|
|
|
if c.closed {
|
|
return nil
|
|
}
|
|
c.closed = true
|
|
|
|
var firstErr error
|
|
|
|
for _, shard := range c.shards.list {
|
|
if err := shard.Client.Close(); err != nil && firstErr == nil {
|
|
firstErr = err
|
|
}
|
|
}
|
|
|
|
c.hash = nil
|
|
c.shards = nil
|
|
c.numShard = 0
|
|
|
|
return firstErr
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
// Ring is a Redis client that uses consistent hashing to distribute
|
|
// keys across multiple Redis servers (shards). It's safe for
|
|
// concurrent use by multiple goroutines.
|
|
//
|
|
// Ring monitors the state of each shard and removes dead shards from
|
|
// the ring. When a shard comes online it is added back to the ring. This
|
|
// gives you maximum availability and partition tolerance, but no
|
|
// consistency between different shards or even clients. Each client
|
|
// uses shards that are available to the client and does not do any
|
|
// coordination when shard state is changed.
|
|
//
|
|
// Ring should be used when you need multiple Redis servers for caching
|
|
// and can tolerate losing data when one of the servers dies.
|
|
// Otherwise you should use Redis Cluster.
|
|
type Ring struct {
|
|
cmdable
|
|
hooks
|
|
|
|
opt *RingOptions
|
|
sharding *ringSharding
|
|
cmdsInfoCache *cmdsInfoCache
|
|
heartbeatCancelFn context.CancelFunc
|
|
}
|
|
|
|
func NewRing(opt *RingOptions) *Ring {
|
|
opt.init()
|
|
|
|
hbCtx, hbCancel := context.WithCancel(context.Background())
|
|
|
|
ring := Ring{
|
|
opt: opt,
|
|
sharding: newRingSharding(opt),
|
|
heartbeatCancelFn: hbCancel,
|
|
}
|
|
|
|
ring.cmdsInfoCache = newCmdsInfoCache(ring.cmdsInfo)
|
|
ring.cmdable = ring.Process
|
|
|
|
ring.hooks.setProcess(ring.process)
|
|
ring.hooks.setProcessPipeline(func(ctx context.Context, cmds []Cmder) error {
|
|
return ring.generalProcessPipeline(ctx, cmds, false)
|
|
})
|
|
ring.hooks.setProcessTxPipeline(func(ctx context.Context, cmds []Cmder) error {
|
|
return ring.generalProcessPipeline(ctx, cmds, true)
|
|
})
|
|
|
|
go ring.sharding.Heartbeat(hbCtx, opt.HeartbeatFrequency)
|
|
|
|
return &ring
|
|
}
|
|
|
|
func (c *Ring) SetAddrs(addrs map[string]string) {
|
|
c.sharding.SetAddrs(addrs)
|
|
}
|
|
|
|
// Do creates a Cmd from the args and processes the cmd.
|
|
func (c *Ring) Do(ctx context.Context, args ...interface{}) *Cmd {
|
|
cmd := NewCmd(ctx, args...)
|
|
_ = c.Process(ctx, cmd)
|
|
return cmd
|
|
}
|
|
|
|
func (c *Ring) Process(ctx context.Context, cmd Cmder) error {
|
|
err := c.hooks.process(ctx, cmd)
|
|
cmd.SetErr(err)
|
|
return err
|
|
}
|
|
|
|
// Options returns read-only Options that were used to create the client.
|
|
func (c *Ring) Options() *RingOptions {
|
|
return c.opt
|
|
}
|
|
|
|
func (c *Ring) retryBackoff(attempt int) time.Duration {
|
|
return internal.RetryBackoff(attempt, c.opt.MinRetryBackoff, c.opt.MaxRetryBackoff)
|
|
}
|
|
|
|
// PoolStats returns accumulated connection pool stats.
|
|
func (c *Ring) PoolStats() *PoolStats {
|
|
shards := c.sharding.List()
|
|
var acc PoolStats
|
|
for _, shard := range shards {
|
|
s := shard.Client.connPool.Stats()
|
|
acc.Hits += s.Hits
|
|
acc.Misses += s.Misses
|
|
acc.Timeouts += s.Timeouts
|
|
acc.TotalConns += s.TotalConns
|
|
acc.IdleConns += s.IdleConns
|
|
}
|
|
return &acc
|
|
}
|
|
|
|
// Len returns the current number of shards in the ring.
|
|
func (c *Ring) Len() int {
|
|
return c.sharding.Len()
|
|
}
|
|
|
|
// Subscribe subscribes the client to the specified channels.
|
|
func (c *Ring) Subscribe(ctx context.Context, channels ...string) *PubSub {
|
|
if len(channels) == 0 {
|
|
panic("at least one channel is required")
|
|
}
|
|
|
|
shard, err := c.sharding.GetByKey(channels[0])
|
|
if err != nil {
|
|
// TODO: return PubSub with sticky error
|
|
panic(err)
|
|
}
|
|
return shard.Client.Subscribe(ctx, channels...)
|
|
}
|
|
|
|
// PSubscribe subscribes the client to the given patterns.
|
|
func (c *Ring) PSubscribe(ctx context.Context, channels ...string) *PubSub {
|
|
if len(channels) == 0 {
|
|
panic("at least one channel is required")
|
|
}
|
|
|
|
shard, err := c.sharding.GetByKey(channels[0])
|
|
if err != nil {
|
|
// TODO: return PubSub with sticky error
|
|
panic(err)
|
|
}
|
|
return shard.Client.PSubscribe(ctx, channels...)
|
|
}
|
|
|
|
// SSubscribe Subscribes the client to the specified shard channels.
|
|
func (c *Ring) SSubscribe(ctx context.Context, channels ...string) *PubSub {
|
|
if len(channels) == 0 {
|
|
panic("at least one channel is required")
|
|
}
|
|
shard, err := c.sharding.GetByKey(channels[0])
|
|
if err != nil {
|
|
// TODO: return PubSub with sticky error
|
|
panic(err)
|
|
}
|
|
return shard.Client.SSubscribe(ctx, channels...)
|
|
}
|
|
|
|
func (c *Ring) OnNewNode(fn func(rdb *Client)) {
|
|
c.sharding.OnNewNode(fn)
|
|
}
|
|
|
|
// ForEachShard concurrently calls the fn on each live shard in the ring.
|
|
// It returns the first error if any.
|
|
func (c *Ring) ForEachShard(
|
|
ctx context.Context,
|
|
fn func(ctx context.Context, client *Client) error,
|
|
) error {
|
|
shards := c.sharding.List()
|
|
var wg sync.WaitGroup
|
|
errCh := make(chan error, 1)
|
|
for _, shard := range shards {
|
|
if shard.IsDown() {
|
|
continue
|
|
}
|
|
|
|
wg.Add(1)
|
|
go func(shard *ringShard) {
|
|
defer wg.Done()
|
|
err := fn(ctx, shard.Client)
|
|
if err != nil {
|
|
select {
|
|
case errCh <- err:
|
|
default:
|
|
}
|
|
}
|
|
}(shard)
|
|
}
|
|
wg.Wait()
|
|
|
|
select {
|
|
case err := <-errCh:
|
|
return err
|
|
default:
|
|
return nil
|
|
}
|
|
}
|
|
|
|
func (c *Ring) cmdsInfo(ctx context.Context) (map[string]*CommandInfo, error) {
|
|
shards := c.sharding.List()
|
|
var firstErr error
|
|
for _, shard := range shards {
|
|
cmdsInfo, err := shard.Client.Command(ctx).Result()
|
|
if err == nil {
|
|
return cmdsInfo, nil
|
|
}
|
|
if firstErr == nil {
|
|
firstErr = err
|
|
}
|
|
}
|
|
if firstErr == nil {
|
|
return nil, errRingShardsDown
|
|
}
|
|
return nil, firstErr
|
|
}
|
|
|
|
func (c *Ring) cmdInfo(ctx context.Context, name string) *CommandInfo {
|
|
cmdsInfo, err := c.cmdsInfoCache.Get(ctx)
|
|
if err != nil {
|
|
return nil
|
|
}
|
|
info := cmdsInfo[name]
|
|
if info == nil {
|
|
internal.Logger.Printf(ctx, "info for cmd=%s not found", name)
|
|
}
|
|
return info
|
|
}
|
|
|
|
func (c *Ring) cmdShard(ctx context.Context, cmd Cmder) (*ringShard, error) {
|
|
cmdInfo := c.cmdInfo(ctx, cmd.Name())
|
|
pos := cmdFirstKeyPos(cmd, cmdInfo)
|
|
if pos == 0 {
|
|
return c.sharding.Random()
|
|
}
|
|
firstKey := cmd.stringArg(pos)
|
|
return c.sharding.GetByKey(firstKey)
|
|
}
|
|
|
|
func (c *Ring) process(ctx context.Context, cmd Cmder) error {
|
|
var lastErr error
|
|
for attempt := 0; attempt <= c.opt.MaxRetries; attempt++ {
|
|
if attempt > 0 {
|
|
if err := internal.Sleep(ctx, c.retryBackoff(attempt)); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
shard, err := c.cmdShard(ctx, cmd)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
lastErr = shard.Client.Process(ctx, cmd)
|
|
if lastErr == nil || !shouldRetry(lastErr, cmd.readTimeout() == nil) {
|
|
return lastErr
|
|
}
|
|
}
|
|
return lastErr
|
|
}
|
|
|
|
func (c *Ring) Pipelined(ctx context.Context, fn func(Pipeliner) error) ([]Cmder, error) {
|
|
return c.Pipeline().Pipelined(ctx, fn)
|
|
}
|
|
|
|
func (c *Ring) Pipeline() Pipeliner {
|
|
pipe := Pipeline{
|
|
exec: pipelineExecer(c.hooks.processPipeline),
|
|
}
|
|
pipe.init()
|
|
return &pipe
|
|
}
|
|
|
|
func (c *Ring) TxPipelined(ctx context.Context, fn func(Pipeliner) error) ([]Cmder, error) {
|
|
return c.TxPipeline().Pipelined(ctx, fn)
|
|
}
|
|
|
|
func (c *Ring) TxPipeline() Pipeliner {
|
|
pipe := Pipeline{
|
|
exec: func(ctx context.Context, cmds []Cmder) error {
|
|
cmds = wrapMultiExec(ctx, cmds)
|
|
return c.hooks.processTxPipeline(ctx, cmds)
|
|
},
|
|
}
|
|
pipe.init()
|
|
return &pipe
|
|
}
|
|
|
|
func (c *Ring) generalProcessPipeline(
|
|
ctx context.Context, cmds []Cmder, tx bool,
|
|
) error {
|
|
if tx {
|
|
// Trim multi .. exec.
|
|
cmds = cmds[1 : len(cmds)-1]
|
|
}
|
|
|
|
cmdsMap := make(map[string][]Cmder)
|
|
|
|
for _, cmd := range cmds {
|
|
cmdInfo := c.cmdInfo(ctx, cmd.Name())
|
|
hash := cmd.stringArg(cmdFirstKeyPos(cmd, cmdInfo))
|
|
if hash != "" {
|
|
hash = c.sharding.Hash(hash)
|
|
}
|
|
cmdsMap[hash] = append(cmdsMap[hash], cmd)
|
|
}
|
|
|
|
var wg sync.WaitGroup
|
|
for hash, cmds := range cmdsMap {
|
|
wg.Add(1)
|
|
go func(hash string, cmds []Cmder) {
|
|
defer wg.Done()
|
|
|
|
// TODO: retry?
|
|
shard, err := c.sharding.GetByName(hash)
|
|
if err != nil {
|
|
setCmdsErr(cmds, err)
|
|
return
|
|
}
|
|
|
|
if tx {
|
|
cmds = wrapMultiExec(ctx, cmds)
|
|
shard.Client.hooks.processTxPipeline(ctx, cmds)
|
|
} else {
|
|
shard.Client.hooks.processPipeline(ctx, cmds)
|
|
}
|
|
}(hash, cmds)
|
|
}
|
|
|
|
wg.Wait()
|
|
return cmdsFirstErr(cmds)
|
|
}
|
|
|
|
func (c *Ring) Watch(ctx context.Context, fn func(*Tx) error, keys ...string) error {
|
|
if len(keys) == 0 {
|
|
return fmt.Errorf("redis: Watch requires at least one key")
|
|
}
|
|
|
|
var shards []*ringShard
|
|
|
|
for _, key := range keys {
|
|
if key != "" {
|
|
shard, err := c.sharding.GetByKey(hashtag.Key(key))
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
shards = append(shards, shard)
|
|
}
|
|
}
|
|
|
|
if len(shards) == 0 {
|
|
return fmt.Errorf("redis: Watch requires at least one shard")
|
|
}
|
|
|
|
if len(shards) > 1 {
|
|
for _, shard := range shards[1:] {
|
|
if shard.Client != shards[0].Client {
|
|
err := fmt.Errorf("redis: Watch requires all keys to be in the same shard")
|
|
return err
|
|
}
|
|
}
|
|
}
|
|
|
|
return shards[0].Client.Watch(ctx, fn, keys...)
|
|
}
|
|
|
|
// Close closes the ring client, releasing any open resources.
|
|
//
|
|
// It is rare to Close a Ring, as the Ring is meant to be long-lived
|
|
// and shared between many goroutines.
|
|
func (c *Ring) Close() error {
|
|
c.heartbeatCancelFn()
|
|
|
|
return c.sharding.Close()
|
|
}
|