10 KiB
jwt-go
A go (or 'golang' for search engine friendliness) implementation of JSON Web Tokens.
Starting with v4.0.0 this project adds Go module support, but maintains backwards compatibility with older v3.x.y
tags and upstream github.com/dgrijalva/jwt-go
.
See the MIGRATION_GUIDE.md
for more information.
After the original author of the library suggested migrating the maintenance of
jwt-go
, a dedicated team of open source maintainers decided to clone the existing library into this repository. See dgrijalva/jwt-go#462 for a detailed discussion on this topic.
SECURITY NOTICE: Some older versions of Go have a security issue in the crypto/elliptic. Recommendation is to upgrade to at least 1.15 See issue dgrijalva/jwt-go#216 for more detail.
SECURITY NOTICE: It's important that you validate the alg
presented is what you expect. This library attempts to make it easy to do the right thing by requiring key types match the expected alg, but you should take the extra step to verify it in your usage. See the examples provided.
Supported Go versions
Our support of Go versions is aligned with Go's version release policy. So we will support a major version of Go until there are two newer major releases. We no longer support building jwt-go with unsupported Go versions, as these contain security vulnerabilities which will not be fixed.
What the heck is a JWT?
JWT.io has a great introduction to JSON Web Tokens.
In short, it's a signed JSON object that does something useful (for example, authentication). It's commonly used for Bearer
tokens in Oauth 2. A token is made of three parts, separated by .
's. The first two parts are JSON objects, that have been base64url encoded. The last part is the signature, encoded the same way.
The first part is called the header. It contains the necessary information for verifying the last part, the signature. For example, which encryption method was used for signing and what key was used.
The part in the middle is the interesting bit. It's called the Claims and contains the actual stuff you care about. Refer to RFC 7519 for information about reserved keys and the proper way to add your own.
What's in the box?
This library supports the parsing and verification as well as the generation and signing of JWTs. Current supported signing algorithms are HMAC SHA, RSA, RSA-PSS, and ECDSA, though hooks are present for adding your own.
Examples
See the project documentation for examples of usage:
- Simple example of parsing and validating a token
- Simple example of building and signing a token
- Directory of Examples
Extensions
This library publishes all the necessary components for adding your own signing methods or key functions. Simply implement the SigningMethod
interface and register a factory method using RegisterSigningMethod
or provide a jwt.Keyfunc
.
A common use case would be integrating with different 3rd party signature providers, like key management services from various cloud providers or Hardware Security Modules (HSMs) or to implement additional standards.
Extension | Purpose | Repo |
---|---|---|
GCP | Integrates with multiple Google Cloud Platform signing tools (AppEngine, IAM API, Cloud KMS) | https://github.com/someone1/gcp-jwt-go |
AWS | Integrates with AWS Key Management Service, KMS | https://github.com/matelang/jwt-go-aws-kms |
JWKS | Provides support for JWKS (RFC 7517) as a jwt.Keyfunc |
https://github.com/MicahParks/keyfunc |
Disclaimer: Unless otherwise specified, these integrations are maintained by third parties and should not be considered as a primary offer by any of the mentioned cloud providers
Compliance
This library was last reviewed to comply with RFC 7519 dated May 2015 with a few notable differences:
- In order to protect against accidental use of Unsecured JWTs, tokens using
alg=none
will only be accepted if the constantjwt.UnsafeAllowNoneSignatureType
is provided as the key.
Project Status & Versioning
This library is considered production ready. Feedback and feature requests are appreciated. The API should be considered stable. There should be very few backwards-incompatible changes outside of major version updates (and only with good reason).
This project uses Semantic Versioning 2.0.0. Accepted pull requests will land on main
. Periodically, versions will be tagged from main
. You can find all the releases on the project releases page.
BREAKING CHANGES:*
A full list of breaking changes is available in VERSION_HISTORY.md
. See MIGRATION_GUIDE.md
for more information on updating your code.
Usage Tips
Signing vs Encryption
A token is simply a JSON object that is signed by its author. this tells you exactly two things about the data:
- The author of the token was in the possession of the signing secret
- The data has not been modified since it was signed
It's important to know that JWT does not provide encryption, which means anyone who has access to the token can read its contents. If you need to protect (encrypt) the data, there is a companion spec, JWE
, that provides this functionality. JWE is currently outside the scope of this library.
Choosing a Signing Method
There are several signing methods available, and you should probably take the time to learn about the various options before choosing one. The principal design decision is most likely going to be symmetric vs asymmetric.
Symmetric signing methods, such as HSA, use only a single secret. This is probably the simplest signing method to use since any []byte
can be used as a valid secret. They are also slightly computationally faster to use, though this rarely is enough to matter. Symmetric signing methods work the best when both producers and consumers of tokens are trusted, or even the same system. Since the same secret is used to both sign and validate tokens, you can't easily distribute the key for validation.
Asymmetric signing methods, such as RSA, use different keys for signing and verifying tokens. This makes it possible to produce tokens with a private key, and allow any consumer to access the public key for verification.
Signing Methods and Key Types
Each signing method expects a different object type for its signing keys. See the package documentation for details. Here are the most common ones:
- The HMAC signing method (
HS256
,HS384
,HS512
) expect[]byte
values for signing and validation - The RSA signing method (
RS256
,RS384
,RS512
) expect*rsa.PrivateKey
for signing and*rsa.PublicKey
for validation - The ECDSA signing method (
ES256
,ES384
,ES512
) expect*ecdsa.PrivateKey
for signing and*ecdsa.PublicKey
for validation - The EdDSA signing method (
Ed25519
) expected25519.PrivateKey
for signing anded25519.PublicKey
for validation
JWT and OAuth
It's worth mentioning that OAuth and JWT are not the same thing. A JWT token is simply a signed JSON object. It can be used anywhere such a thing is useful. There is some confusion, though, as JWT is the most common type of bearer token used in OAuth2 authentication.
Without going too far down the rabbit hole, here's a description of the interaction of these technologies:
- OAuth is a protocol for allowing an identity provider to be separate from the service a user is logging in to. For example, whenever you use Facebook to log into a different service (Yelp, Spotify, etc), you are using OAuth.
- OAuth defines several options for passing around authentication data. One popular method is called a "bearer token". A bearer token is simply a string that should only be held by an authenticated user. Thus, simply presenting this token proves your identity. You can probably derive from here why a JWT might make a good bearer token.
- Because bearer tokens are used for authentication, it's important they're kept secret. This is why transactions that use bearer tokens typically happen over SSL.
Troubleshooting
This library uses descriptive error messages whenever possible. If you are not getting the expected result, have a look at the errors. The most common place people get stuck is providing the correct type of key to the parser. See the above section on signing methods and key types.
More
Documentation can be found on pkg.go.dev.
The command line utility included in this project (cmd/jwt) provides a straightforward example of token creation and parsing as well as a useful tool for debugging your own integration. You'll also find several implementation examples in the documentation.
golang-jwt incorporates a modified version of the JWT logo, which is distributed under the terms of the MIT License.