package jwt import ( "crypto/subtle" "encoding/base64" "encoding/json" "net/http" "strings" "time" ) // TimeFunc provides the current time when parsing token to validate "exp" claim (expiration time). // You can override it to use another time value. This is useful for testing or if your // server uses a different time zone than your tokens. var TimeFunc = time.Now // Parse methods use this callback function to supply // the key for verification. The function receives the parsed, // but unverified Token. This allows you to use propries in the // Header of the token (such as `kid`) to identify which key to use. type Keyfunc func(*Token) (interface{}, error) // For a type to be a Claims object, it must just have a Valid method that determines // if the token is invalid for any supported reason type Claims interface { Valid() error } // Structured version of Claims Section, as referenced at // https://tools.ietf.org/html/rfc7519#section-4.1 type StandardClaims struct { Audience string `json:"aud,omitempty"` ExpiresAt int64 `json:"exp,omitempty"` Id string `json:"jti,omitempty"` IssuedAt int64 `json:"iat,omitempty"` Issuer string `json:"iss,omitempty"` NotBefore int64 `json:"nbf,omitempty"` Subject string `json:"sub,omitempty"` } // Validates time based claims "exp, iat, nbf". // There is no accounting for clock skew. // As well, if any of the above claims are not in the token, it will still // be considered a valid claim. func (c StandardClaims) Valid() error { vErr := new(ValidationError) now := TimeFunc().Unix() // The claims below are optional, by default, so if they are set to the // default value in Go, let's not fail the verification for them. if c.VerifyExpiresAt(now, false) == false { vErr.err = "Token is expired" vErr.Errors |= ValidationErrorExpired } if c.VerifyIssuedAt(now, false) == false { vErr.err = "Token used before issued, clock skew issue?" vErr.Errors |= ValidationErrorIssuedAt } if c.VerifyNotBefore(now, false) == false { vErr.err = "Token is not valid yet" vErr.Errors |= ValidationErrorNotValidYet } if vErr.valid() { return nil } return vErr } // Compares the aud claim against cmp. // If required is false, this method will return true if the value matches or is unset func (c *StandardClaims) VerifyAudience(cmp string, req bool) bool { return verifyAud(c.Audience, cmp, req) } // Compares the exp claim against cmp. // If required is false, this method will return true if the value matches or is unset func (c *StandardClaims) VerifyExpiresAt(cmp int64, req bool) bool { return verifyExp(c.ExpiresAt, cmp, req) } // Compares the iat claim against cmp. // If required is false, this method will return true if the value matches or is unset func (c *StandardClaims) VerifyIssuedAt(cmp int64, req bool) bool { return verifyIat(c.IssuedAt, cmp, req) } // Compares the iss claim against cmp. // If required is false, this method will return true if the value matches or is unset func (c *StandardClaims) VerifyIssuer(cmp string, req bool) bool { return verifyIss(c.Issuer, cmp, req) } // Compares the nbf claim against cmp. // If required is false, this method will return true if the value matches or is unset func (c *StandardClaims) VerifyNotBefore(cmp int64, req bool) bool { return verifyNbf(c.NotBefore, cmp, req) } type MapClaim map[string]interface{} // Compares the aud claim against cmp. // If required is false, this method will return true if the value matches or is unset func (m MapClaim) VerifyAudience(cmp string, req bool) bool { aud, _ := m["aud"].(string) return verifyAud(aud, cmp, req) } // Compares the exp claim against cmp. // If required is false, this method will return true if the value matches or is unset func (m MapClaim) VerifyExpiresAt(cmp int64, req bool) bool { exp, _ := m["exp"].(float64) return verifyExp(int64(exp), cmp, req) } // Compares the iat claim against cmp. // If required is false, this method will return true if the value matches or is unset func (m MapClaim) VerifyIssuedAt(cmp int64, req bool) bool { iat, _ := m["iat"].(float64) return verifyIat(int64(iat), cmp, req) } // Compares the iss claim against cmp. // If required is false, this method will return true if the value matches or is unset func (m MapClaim) VerifyIssuer(cmp string, req bool) bool { iss, _ := m["iss"].(string) return verifyIss(iss, cmp, req) } // Compares the nbf claim against cmp. // If required is false, this method will return true if the value matches or is unset func (m MapClaim) VerifyNotBefore(cmp int64, req bool) bool { nbf, _ := m["nbf"].(float64) return verifyNbf(int64(nbf), cmp, req) } // Validates time based claims "exp, iat, nbf". // There is no accounting for clock skew. // As well, if any of the above claims are not in the token, it will still // be considered a valid claim. func (m MapClaim) Valid() error { vErr := new(ValidationError) now := TimeFunc().Unix() if m.VerifyExpiresAt(now, false) == false { vErr.err = "Token is expired" vErr.Errors |= ValidationErrorExpired } if m.VerifyIssuedAt(now, false) == false { vErr.err = "Token used before issued, clock skew issue?" vErr.Errors |= ValidationErrorIssuedAt } if m.VerifyNotBefore(now, false) == false { vErr.err = "Token is not valid yet" vErr.Errors |= ValidationErrorNotValidYet } if vErr.valid() { return nil } return vErr } func verifyAud(aud string, cmp string, required bool) bool { if aud == "" { return !required } if subtle.ConstantTimeCompare([]byte(aud), []byte(cmp)) != 0 { return true } else { return false } } func verifyExp(exp int64, now int64, required bool) bool { if exp == 0 { return !required } return now <= exp } func verifyIat(iat int64, now int64, required bool) bool { if iat == 0 { return !required } return now >= iat } func verifyIss(iss string, cmp string, required bool) bool { if iss == "" { return !required } if subtle.ConstantTimeCompare([]byte(iss), []byte(cmp)) != 0 { return true } else { return false } } func verifyNbf(nbf int64, now int64, required bool) bool { if nbf == 0 { return !required } return now >= nbf } // A JWT Token. Different fields will be used depending on whether you're // creating or parsing/verifying a token. type Token struct { Raw string // The raw token. Populated when you Parse a token Method SigningMethod // The signing method used or to be used Header map[string]interface{} // The first segment of the token Claims Claims // The second segment of the token Signature string // The third segment of the token. Populated when you Parse a token Valid bool // Is the token valid? Populated when you Parse/Verify a token } // Create a new Token. Takes a signing method func New(method SigningMethod) *Token { return &Token{ Header: map[string]interface{}{ "typ": "JWT", "alg": method.Alg(), }, Claims: MapClaim{}, Method: method, } } func NewWithClaims(method SigningMethod, claims Claims) *Token { return &Token{ Header: map[string]interface{}{ "typ": "JWT", "alg": method.Alg(), }, Claims: claims, Method: method, } } // Get the complete, signed token func (t *Token) SignedString(key interface{}) (string, error) { var sig, sstr string var err error if sstr, err = t.SigningString(); err != nil { return "", err } if sig, err = t.Method.Sign(sstr, key); err != nil { return "", err } return strings.Join([]string{sstr, sig}, "."), nil } // Generate the signing string. This is the // most expensive part of the whole deal. Unless you // need this for something special, just go straight for // the SignedString. func (t *Token) SigningString() (string, error) { var err error parts := make([]string, 2) for i, _ := range parts { var jsonValue []byte if i == 0 { if jsonValue, err = json.Marshal(t.Header); err != nil { return "", err } } else { if jsonValue, err = json.Marshal(t.Claims); err != nil { return "", err } } parts[i] = EncodeSegment(jsonValue) } return strings.Join(parts, "."), nil } // Parse, validate, and return a token. // keyFunc will receive the parsed token and should return the key for validating. // If everything is kosher, err will be nil func Parse(tokenString string, keyFunc Keyfunc) (*Token, error) { return ParseWithClaims(tokenString, keyFunc, &MapClaim{}) } func ParseWithClaims(tokenString string, keyFunc Keyfunc, claims Claims) (*Token, error) { parts := strings.Split(tokenString, ".") if len(parts) != 3 { return nil, &ValidationError{err: "token contains an invalid number of segments", Errors: ValidationErrorMalformed} } var err error token := &Token{ Raw: tokenString, } // parse Header var headerBytes []byte if headerBytes, err = DecodeSegment(parts[0]); err != nil { return token, &ValidationError{err: err.Error(), Errors: ValidationErrorMalformed} } if err = json.Unmarshal(headerBytes, &token.Header); err != nil { return token, &ValidationError{err: err.Error(), Errors: ValidationErrorMalformed} } // parse Claims var claimBytes []byte if claimBytes, err = DecodeSegment(parts[1]); err != nil { return token, &ValidationError{err: err.Error(), Errors: ValidationErrorMalformed} } if err = json.Unmarshal(claimBytes, &claims); err != nil { return token, &ValidationError{err: err.Error(), Errors: ValidationErrorMalformed} } token.Claims = claims // Lookup signature method if method, ok := token.Header["alg"].(string); ok { if token.Method = GetSigningMethod(method); token.Method == nil { return token, &ValidationError{err: "signing method (alg) is unavailable.", Errors: ValidationErrorUnverifiable} } } else { return token, &ValidationError{err: "signing method (alg) is unspecified.", Errors: ValidationErrorUnverifiable} } // Lookup key var key interface{} if keyFunc == nil { // keyFunc was not provided. short circuiting validation return token, &ValidationError{err: "no Keyfunc was provided.", Errors: ValidationErrorUnverifiable} } if key, err = keyFunc(token); err != nil { // keyFunc returned an error return token, &ValidationError{err: err.Error(), Errors: ValidationErrorUnverifiable} } vErr := &ValidationError{} // Validate Claims if err := token.Claims.Valid(); err != nil { // If the Claims Valid returned an error, check if it is a validation error, // If it was another error type, create a ValidationError with a generic ClaimsInvalid flag set if e, ok := err.(*ValidationError); !ok { vErr = &ValidationError{err: err.Error(), Errors: ValidationErrorClaimsInvalid} } else { vErr = e } } // Perform validation if err = token.Method.Verify(strings.Join(parts[0:2], "."), parts[2], key); err != nil { vErr.err = err.Error() vErr.Errors |= ValidationErrorSignatureInvalid } if vErr.valid() { token.Valid = true return token, nil } return token, vErr } // Try to find the token in an http.Request. // This method will call ParseMultipartForm if there's no token in the header. // Currently, it looks in the Authorization header as well as // looking for an 'access_token' request parameter in req.Form. func ParseFromRequest(req *http.Request, keyFunc Keyfunc) (token *Token, err error) { return ParseFromRequestWithClaims(req, keyFunc, &MapClaim{}) } func ParseFromRequestWithClaims(req *http.Request, keyFunc Keyfunc, claims Claims) (token *Token, err error) { // Look for an Authorization header if ah := req.Header.Get("Authorization"); ah != "" { // Should be a bearer token if len(ah) > 6 && strings.ToUpper(ah[0:6]) == "BEARER" { return ParseWithClaims(ah[7:], keyFunc, claims) } } // Look for "access_token" parameter req.ParseMultipartForm(10e6) if tokStr := req.Form.Get("access_token"); tokStr != "" { return ParseWithClaims(tokStr, keyFunc, claims) } return nil, ErrNoTokenInRequest } // Encode JWT specific base64url encoding with padding stripped func EncodeSegment(seg []byte) string { return strings.TrimRight(base64.URLEncoding.EncodeToString(seg), "=") } // Decode JWT specific base64url encoding with padding stripped func DecodeSegment(seg string) ([]byte, error) { if l := len(seg) % 4; l > 0 { seg += strings.Repeat("=", 4-l) } return base64.URLEncoding.DecodeString(seg) }