package jwt import ( "bytes" "encoding/base64" "encoding/json" "fmt" "strings" ) type Parser struct { // If populated, only these methods will be considered valid. validMethods []string // Use JSON Number format in JSON decoder. useJSONNumber bool // Skip claims validation during token parsing. skipClaimsValidation bool validator *Validator decodeStrict bool decodePaddingAllowed bool } // NewParser creates a new Parser with the specified options func NewParser(options ...ParserOption) *Parser { p := &Parser{ validator: &Validator{}, } // Loop through our parsing options and apply them for _, option := range options { option(p) } return p } // Parse parses, validates, verifies the signature and returns the parsed token. // keyFunc will receive the parsed token and should return the key for validating. func (p *Parser) Parse(tokenString string, keyFunc Keyfunc) (*Token, error) { return p.ParseWithClaims(tokenString, MapClaims{}, keyFunc) } // ParseWithClaims parses, validates, and verifies like Parse, but supplies a default object implementing the Claims // interface. This provides default values which can be overridden and allows a caller to use their own type, rather // than the default MapClaims implementation of Claims. // // Note: If you provide a custom claim implementation that embeds one of the standard claims (such as RegisteredClaims), // make sure that a) you either embed a non-pointer version of the claims or b) if you are using a pointer, allocate the // proper memory for it before passing in the overall claims, otherwise you might run into a panic. func (p *Parser) ParseWithClaims(tokenString string, claims Claims, keyFunc Keyfunc) (*Token, error) { token, parts, err := p.ParseUnverified(tokenString, claims) if err != nil { return token, err } // Verify signing method is in the required set if p.validMethods != nil { var signingMethodValid = false var alg = token.Method.Alg() for _, m := range p.validMethods { if m == alg { signingMethodValid = true break } } if !signingMethodValid { // signing method is not in the listed set return token, newError(fmt.Sprintf("signing method %v is invalid", alg), ErrTokenSignatureInvalid) } } // Decode signature token.Signature, err = p.DecodeSegment(parts[2]) if err != nil { return token, newError("could not base64 decode signature", ErrTokenMalformed, err) } text := strings.Join(parts[0:2], ".") // Lookup key(s) if keyFunc == nil { // keyFunc was not provided. short circuiting validation return token, newError("no keyfunc was provided", ErrTokenUnverifiable) } got, err := keyFunc(token) if err != nil { return token, newError("error while executing keyfunc", ErrTokenUnverifiable, err) } switch have := got.(type) { case VerificationKeySet: if len(have.Keys) == 0 { return token, newError("keyfunc returned empty verification key set", ErrTokenUnverifiable) } // Iterate through keys and verify signature, skipping the rest when a match is found. // Return the last error if no match is found. for _, key := range have.Keys { if err = token.Method.Verify(text, token.Signature, key); err == nil { break } } default: err = token.Method.Verify(text, token.Signature, have) } if err != nil { return token, newError("", ErrTokenSignatureInvalid, err) } // Validate Claims if !p.skipClaimsValidation { // Make sure we have at least a default validator if p.validator == nil { p.validator = NewValidator() } if err := p.validator.Validate(claims); err != nil { return token, newError("", ErrTokenInvalidClaims, err) } } // No errors so far, token is valid. token.Valid = true return token, nil } // ParseUnverified parses the token but doesn't validate the signature. // // WARNING: Don't use this method unless you know what you're doing. // // It's only ever useful in cases where you know the signature is valid (since it has already // been or will be checked elsewhere in the stack) and you want to extract values from it. func (p *Parser) ParseUnverified(tokenString string, claims Claims) (token *Token, parts []string, err error) { parts = strings.Split(tokenString, ".") if len(parts) != 3 { return nil, parts, newError("token contains an invalid number of segments", ErrTokenMalformed) } token = &Token{Raw: tokenString} // parse Header var headerBytes []byte if headerBytes, err = p.DecodeSegment(parts[0]); err != nil { return token, parts, newError("could not base64 decode header", ErrTokenMalformed, err) } if err = json.Unmarshal(headerBytes, &token.Header); err != nil { return token, parts, newError("could not JSON decode header", ErrTokenMalformed, err) } // parse Claims token.Claims = claims claimBytes, err := p.DecodeSegment(parts[1]) if err != nil { return token, parts, newError("could not base64 decode claim", ErrTokenMalformed, err) } // If `useJSONNumber` is enabled then we must use *json.Decoder to decode // the claims. However, this comes with a performance penalty so only use // it if we must and, otherwise, simple use json.Unmarshal. if !p.useJSONNumber { // JSON Unmarshal. Special case for map type to avoid weird pointer behavior. if c, ok := token.Claims.(MapClaims); ok { err = json.Unmarshal(claimBytes, &c) } else { err = json.Unmarshal(claimBytes, &claims) } } else { dec := json.NewDecoder(bytes.NewBuffer(claimBytes)) dec.UseNumber() // JSON Decode. Special case for map type to avoid weird pointer behavior. if c, ok := token.Claims.(MapClaims); ok { err = dec.Decode(&c) } else { err = dec.Decode(&claims) } } if err != nil { return token, parts, newError("could not JSON decode claim", ErrTokenMalformed, err) } // Lookup signature method if method, ok := token.Header["alg"].(string); ok { if token.Method = GetSigningMethod(method); token.Method == nil { return token, parts, newError("signing method (alg) is unavailable", ErrTokenUnverifiable) } } else { return token, parts, newError("signing method (alg) is unspecified", ErrTokenUnverifiable) } // Set token signature token.Signature, err = p.DecodeSegment(parts[2]) if err != nil { return token, newError("could not base64 decode signature", ErrTokenMalformed, err) } return token, parts, nil } // DecodeSegment decodes a JWT specific base64url encoding. This function will // take into account whether the [Parser] is configured with additional options, // such as [WithStrictDecoding] or [WithPaddingAllowed]. func (p *Parser) DecodeSegment(seg string) ([]byte, error) { encoding := base64.RawURLEncoding if p.decodePaddingAllowed { if l := len(seg) % 4; l > 0 { seg += strings.Repeat("=", 4-l) } encoding = base64.URLEncoding } if p.decodeStrict { encoding = encoding.Strict() } return encoding.DecodeString(seg) } // Parse parses, validates, verifies the signature and returns the parsed token. // keyFunc will receive the parsed token and should return the cryptographic key // for verifying the signature. The caller is strongly encouraged to set the // WithValidMethods option to validate the 'alg' claim in the token matches the // expected algorithm. For more details about the importance of validating the // 'alg' claim, see // https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/ func Parse(tokenString string, keyFunc Keyfunc, options ...ParserOption) (*Token, error) { return NewParser(options...).Parse(tokenString, keyFunc) } // ParseWithClaims is a shortcut for NewParser().ParseWithClaims(). // // Note: If you provide a custom claim implementation that embeds one of the // standard claims (such as RegisteredClaims), make sure that a) you either // embed a non-pointer version of the claims or b) if you are using a pointer, // allocate the proper memory for it before passing in the overall claims, // otherwise you might run into a panic. func ParseWithClaims(tokenString string, claims Claims, keyFunc Keyfunc, options ...ParserOption) (*Token, error) { return NewParser(options...).ParseWithClaims(tokenString, claims, keyFunc) }