go-sqlite3/sqlite3.go

1967 lines
54 KiB
Go

// Copyright (C) 2014 Yasuhiro Matsumoto <mattn.jp@gmail.com>.
// Copyright (C) 2018 G.J.R. Timmer <gjr.timmer@gmail.com>.
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
// +build cgo
package sqlite3
/*
#cgo CFLAGS: -std=gnu99
#cgo CFLAGS: -DSQLITE_ENABLE_RTREE
#cgo CFLAGS: -DSQLITE_THREADSAFE=1
#cgo CFLAGS: -DHAVE_USLEEP=1
#cgo CFLAGS: -DSQLITE_ENABLE_FTS3
#cgo CFLAGS: -DSQLITE_ENABLE_FTS3_PARENTHESIS
#cgo CFLAGS: -DSQLITE_ENABLE_FTS4_UNICODE61
#cgo CFLAGS: -DSQLITE_TRACE_SIZE_LIMIT=15
#cgo CFLAGS: -DSQLITE_OMIT_DEPRECATED
#cgo CFLAGS: -DSQLITE_DISABLE_INTRINSIC
#cgo CFLAGS: -DSQLITE_DEFAULT_WAL_SYNCHRONOUS=1
#cgo CFLAGS: -DSQLITE_ENABLE_UPDATE_DELETE_LIMIT
#cgo CFLAGS: -Wno-deprecated-declarations
#cgo linux,!android CFLAGS: -DHAVE_PREAD64=1 -DHAVE_PWRITE64=1
#ifndef USE_LIBSQLITE3
#include <sqlite3-binding.h>
#else
#include <sqlite3.h>
#endif
#include <stdlib.h>
#include <string.h>
#ifdef __CYGWIN__
# include <errno.h>
#endif
#ifndef SQLITE_OPEN_READWRITE
# define SQLITE_OPEN_READWRITE 0
#endif
#ifndef SQLITE_OPEN_FULLMUTEX
# define SQLITE_OPEN_FULLMUTEX 0
#endif
#ifndef SQLITE_DETERMINISTIC
# define SQLITE_DETERMINISTIC 0
#endif
static int
_sqlite3_open_v2(const char *filename, sqlite3 **ppDb, int flags, const char *zVfs) {
#ifdef SQLITE_OPEN_URI
return sqlite3_open_v2(filename, ppDb, flags | SQLITE_OPEN_URI, zVfs);
#else
return sqlite3_open_v2(filename, ppDb, flags, zVfs);
#endif
}
static int
_sqlite3_bind_text(sqlite3_stmt *stmt, int n, char *p, int np) {
return sqlite3_bind_text(stmt, n, p, np, SQLITE_TRANSIENT);
}
static int
_sqlite3_bind_blob(sqlite3_stmt *stmt, int n, void *p, int np) {
return sqlite3_bind_blob(stmt, n, p, np, SQLITE_TRANSIENT);
}
#include <stdio.h>
#include <stdint.h>
static int
_sqlite3_exec(sqlite3* db, const char* pcmd, long long* rowid, long long* changes)
{
int rv = sqlite3_exec(db, pcmd, 0, 0, 0);
*rowid = (long long) sqlite3_last_insert_rowid(db);
*changes = (long long) sqlite3_changes(db);
return rv;
}
static int
_sqlite3_step(sqlite3_stmt* stmt, long long* rowid, long long* changes)
{
int rv = sqlite3_step(stmt);
sqlite3* db = sqlite3_db_handle(stmt);
*rowid = (long long) sqlite3_last_insert_rowid(db);
*changes = (long long) sqlite3_changes(db);
return rv;
}
void _sqlite3_result_text(sqlite3_context* ctx, const char* s) {
sqlite3_result_text(ctx, s, -1, &free);
}
void _sqlite3_result_blob(sqlite3_context* ctx, const void* b, int l) {
sqlite3_result_blob(ctx, b, l, SQLITE_TRANSIENT);
}
int _sqlite3_create_function(
sqlite3 *db,
const char *zFunctionName,
int nArg,
int eTextRep,
uintptr_t pApp,
void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
void (*xStep)(sqlite3_context*,int,sqlite3_value**),
void (*xFinal)(sqlite3_context*)
) {
return sqlite3_create_function(db, zFunctionName, nArg, eTextRep, (void*) pApp, xFunc, xStep, xFinal);
}
void callbackTrampoline(sqlite3_context*, int, sqlite3_value**);
void stepTrampoline(sqlite3_context*, int, sqlite3_value**);
void doneTrampoline(sqlite3_context*);
int compareTrampoline(void*, int, char*, int, char*);
int commitHookTrampoline(void*);
void rollbackHookTrampoline(void*);
void updateHookTrampoline(void*, int, char*, char*, sqlite3_int64);
#ifdef SQLITE_LIMIT_WORKER_THREADS
# define _SQLITE_HAS_LIMIT
# define SQLITE_LIMIT_LENGTH 0
# define SQLITE_LIMIT_SQL_LENGTH 1
# define SQLITE_LIMIT_COLUMN 2
# define SQLITE_LIMIT_EXPR_DEPTH 3
# define SQLITE_LIMIT_COMPOUND_SELECT 4
# define SQLITE_LIMIT_VDBE_OP 5
# define SQLITE_LIMIT_FUNCTION_ARG 6
# define SQLITE_LIMIT_ATTACHED 7
# define SQLITE_LIMIT_LIKE_PATTERN_LENGTH 8
# define SQLITE_LIMIT_VARIABLE_NUMBER 9
# define SQLITE_LIMIT_TRIGGER_DEPTH 10
# define SQLITE_LIMIT_WORKER_THREADS 11
# else
# define SQLITE_LIMIT_WORKER_THREADS 11
#endif
static int _sqlite3_limit(sqlite3* db, int limitId, int newLimit) {
#ifndef _SQLITE_HAS_LIMIT
return -1;
#else
return sqlite3_limit(db, limitId, newLimit);
#endif
}
*/
import "C"
import (
"context"
"database/sql"
"database/sql/driver"
"errors"
"fmt"
"io"
"net/url"
"reflect"
"runtime"
"strconv"
"strings"
"sync"
"time"
"unsafe"
)
// SQLiteTimestampFormats is timestamp formats understood by both this module
// and SQLite. The first format in the slice will be used when saving time
// values into the database. When parsing a string from a timestamp or datetime
// column, the formats are tried in order.
var SQLiteTimestampFormats = []string{
// By default, store timestamps with whatever timezone they come with.
// When parsed, they will be returned with the same timezone.
"2006-01-02 15:04:05.999999999-07:00",
"2006-01-02T15:04:05.999999999-07:00",
"2006-01-02 15:04:05.999999999",
"2006-01-02T15:04:05.999999999",
"2006-01-02 15:04:05",
"2006-01-02T15:04:05",
"2006-01-02 15:04",
"2006-01-02T15:04",
"2006-01-02",
}
const (
columnDate string = "date"
columnDatetime string = "datetime"
columnTimestamp string = "timestamp"
)
func init() {
sql.Register("sqlite3", &SQLiteDriver{})
}
// Version returns SQLite library version information.
func Version() (libVersion string, libVersionNumber int, sourceID string) {
libVersion = C.GoString(C.sqlite3_libversion())
libVersionNumber = int(C.sqlite3_libversion_number())
sourceID = C.GoString(C.sqlite3_sourceid())
return libVersion, libVersionNumber, sourceID
}
const (
SQLITE_DELETE = C.SQLITE_DELETE
SQLITE_INSERT = C.SQLITE_INSERT
SQLITE_UPDATE = C.SQLITE_UPDATE
)
// SQLiteDriver implement sql.Driver.
type SQLiteDriver struct {
Extensions []string
ConnectHook func(*SQLiteConn) error
}
// SQLiteConn implement sql.Conn.
type SQLiteConn struct {
mu sync.Mutex
db *C.sqlite3
loc *time.Location
txlock string
funcs []*functionInfo
aggregators []*aggInfo
}
// SQLiteTx implemen sql.Tx.
type SQLiteTx struct {
c *SQLiteConn
}
// SQLiteStmt implement sql.Stmt.
type SQLiteStmt struct {
mu sync.Mutex
c *SQLiteConn
s *C.sqlite3_stmt
t string
closed bool
cls bool
}
// SQLiteResult implement sql.Result.
type SQLiteResult struct {
id int64
changes int64
}
// SQLiteRows implement sql.Rows.
type SQLiteRows struct {
s *SQLiteStmt
nc int
cols []string
decltype []string
cls bool
closed bool
done chan struct{}
}
type functionInfo struct {
f reflect.Value
argConverters []callbackArgConverter
variadicConverter callbackArgConverter
retConverter callbackRetConverter
}
func (fi *functionInfo) Call(ctx *C.sqlite3_context, argv []*C.sqlite3_value) {
args, err := callbackConvertArgs(argv, fi.argConverters, fi.variadicConverter)
if err != nil {
callbackError(ctx, err)
return
}
ret := fi.f.Call(args)
if len(ret) == 2 && ret[1].Interface() != nil {
callbackError(ctx, ret[1].Interface().(error))
return
}
err = fi.retConverter(ctx, ret[0])
if err != nil {
callbackError(ctx, err)
return
}
}
type aggInfo struct {
constructor reflect.Value
// Active aggregator objects for aggregations in flight. The
// aggregators are indexed by a counter stored in the aggregation
// user data space provided by sqlite.
active map[int64]reflect.Value
next int64
stepArgConverters []callbackArgConverter
stepVariadicConverter callbackArgConverter
doneRetConverter callbackRetConverter
}
func (ai *aggInfo) agg(ctx *C.sqlite3_context) (int64, reflect.Value, error) {
aggIdx := (*int64)(C.sqlite3_aggregate_context(ctx, C.int(8)))
if *aggIdx == 0 {
*aggIdx = ai.next
ret := ai.constructor.Call(nil)
if len(ret) == 2 && ret[1].Interface() != nil {
return 0, reflect.Value{}, ret[1].Interface().(error)
}
if ret[0].IsNil() {
return 0, reflect.Value{}, errors.New("aggregator constructor returned nil state")
}
ai.next++
ai.active[*aggIdx] = ret[0]
}
return *aggIdx, ai.active[*aggIdx], nil
}
func (ai *aggInfo) Step(ctx *C.sqlite3_context, argv []*C.sqlite3_value) {
_, agg, err := ai.agg(ctx)
if err != nil {
callbackError(ctx, err)
return
}
args, err := callbackConvertArgs(argv, ai.stepArgConverters, ai.stepVariadicConverter)
if err != nil {
callbackError(ctx, err)
return
}
ret := agg.MethodByName("Step").Call(args)
if len(ret) == 1 && ret[0].Interface() != nil {
callbackError(ctx, ret[0].Interface().(error))
return
}
}
func (ai *aggInfo) Done(ctx *C.sqlite3_context) {
idx, agg, err := ai.agg(ctx)
if err != nil {
callbackError(ctx, err)
return
}
defer func() { delete(ai.active, idx) }()
ret := agg.MethodByName("Done").Call(nil)
if len(ret) == 2 && ret[1].Interface() != nil {
callbackError(ctx, ret[1].Interface().(error))
return
}
err = ai.doneRetConverter(ctx, ret[0])
if err != nil {
callbackError(ctx, err)
return
}
}
// Commit transaction.
func (tx *SQLiteTx) Commit() error {
_, err := tx.c.exec(context.Background(), "COMMIT", nil)
if err != nil && err.(Error).Code == C.SQLITE_BUSY {
// sqlite3 will leave the transaction open in this scenario.
// However, database/sql considers the transaction complete once we
// return from Commit() - we must clean up to honour its semantics.
tx.c.exec(context.Background(), "ROLLBACK", nil)
}
return err
}
// Rollback transaction.
func (tx *SQLiteTx) Rollback() error {
_, err := tx.c.exec(context.Background(), "ROLLBACK", nil)
return err
}
// RegisterCollation makes a Go function available as a collation.
//
// cmp receives two UTF-8 strings, a and b. The result should be 0 if
// a==b, -1 if a < b, and +1 if a > b.
//
// cmp must always return the same result given the same
// inputs. Additionally, it must have the following properties for all
// strings A, B and C: if A==B then B==A; if A==B and B==C then A==C;
// if A<B then B>A; if A<B and B<C then A<C.
//
// If cmp does not obey these constraints, sqlite3's behavior is
// undefined when the collation is used.
func (c *SQLiteConn) RegisterCollation(name string, cmp func(string, string) int) error {
handle := newHandle(c, cmp)
cname := C.CString(name)
defer C.free(unsafe.Pointer(cname))
rv := C.sqlite3_create_collation(c.db, cname, C.SQLITE_UTF8, unsafe.Pointer(handle), (*[0]byte)(unsafe.Pointer(C.compareTrampoline)))
if rv != C.SQLITE_OK {
return c.lastError()
}
return nil
}
// RegisterCommitHook sets the commit hook for a connection.
//
// If the callback returns non-zero the transaction will become a rollback.
//
// If there is an existing commit hook for this connection, it will be
// removed. If callback is nil the existing hook (if any) will be removed
// without creating a new one.
func (c *SQLiteConn) RegisterCommitHook(callback func() int) {
if callback == nil {
C.sqlite3_commit_hook(c.db, nil, nil)
} else {
C.sqlite3_commit_hook(c.db, (*[0]byte)(C.commitHookTrampoline), unsafe.Pointer(newHandle(c, callback)))
}
}
// RegisterRollbackHook sets the rollback hook for a connection.
//
// If there is an existing rollback hook for this connection, it will be
// removed. If callback is nil the existing hook (if any) will be removed
// without creating a new one.
func (c *SQLiteConn) RegisterRollbackHook(callback func()) {
if callback == nil {
C.sqlite3_rollback_hook(c.db, nil, nil)
} else {
C.sqlite3_rollback_hook(c.db, (*[0]byte)(C.rollbackHookTrampoline), unsafe.Pointer(newHandle(c, callback)))
}
}
// RegisterUpdateHook sets the update hook for a connection.
//
// The parameters to the callback are the operation (one of the constants
// SQLITE_INSERT, SQLITE_DELETE, or SQLITE_UPDATE), the database name, the
// table name, and the rowid.
//
// If there is an existing update hook for this connection, it will be
// removed. If callback is nil the existing hook (if any) will be removed
// without creating a new one.
func (c *SQLiteConn) RegisterUpdateHook(callback func(int, string, string, int64)) {
if callback == nil {
C.sqlite3_update_hook(c.db, nil, nil)
} else {
C.sqlite3_update_hook(c.db, (*[0]byte)(C.updateHookTrampoline), unsafe.Pointer(newHandle(c, callback)))
}
}
// RegisterFunc makes a Go function available as a SQLite function.
//
// The Go function can have arguments of the following types: any
// numeric type except complex, bool, []byte, string and
// interface{}. interface{} arguments are given the direct translation
// of the SQLite data type: int64 for INTEGER, float64 for FLOAT,
// []byte for BLOB, string for TEXT.
//
// The function can additionally be variadic, as long as the type of
// the variadic argument is one of the above.
//
// If pure is true. SQLite will assume that the function's return
// value depends only on its inputs, and make more aggressive
// optimizations in its queries.
//
// See _example/go_custom_funcs for a detailed example.
func (c *SQLiteConn) RegisterFunc(name string, impl interface{}, pure bool) error {
var fi functionInfo
fi.f = reflect.ValueOf(impl)
t := fi.f.Type()
if t.Kind() != reflect.Func {
return errors.New("Non-function passed to RegisterFunc")
}
if t.NumOut() != 1 && t.NumOut() != 2 {
return errors.New("SQLite functions must return 1 or 2 values")
}
if t.NumOut() == 2 && !t.Out(1).Implements(reflect.TypeOf((*error)(nil)).Elem()) {
return errors.New("Second return value of SQLite function must be error")
}
numArgs := t.NumIn()
if t.IsVariadic() {
numArgs--
}
for i := 0; i < numArgs; i++ {
conv, err := callbackArg(t.In(i))
if err != nil {
return err
}
fi.argConverters = append(fi.argConverters, conv)
}
if t.IsVariadic() {
conv, err := callbackArg(t.In(numArgs).Elem())
if err != nil {
return err
}
fi.variadicConverter = conv
// Pass -1 to sqlite so that it allows any number of
// arguments. The call helper verifies that the minimum number
// of arguments is present for variadic functions.
numArgs = -1
}
conv, err := callbackRet(t.Out(0))
if err != nil {
return err
}
fi.retConverter = conv
// fi must outlast the database connection, or we'll have dangling pointers.
c.funcs = append(c.funcs, &fi)
cname := C.CString(name)
defer C.free(unsafe.Pointer(cname))
opts := C.SQLITE_UTF8
if pure {
opts |= C.SQLITE_DETERMINISTIC
}
rv := sqlite3CreateFunction(c.db, cname, C.int(numArgs), C.int(opts), newHandle(c, &fi), C.callbackTrampoline, nil, nil)
if rv != C.SQLITE_OK {
return c.lastError()
}
return nil
}
func sqlite3CreateFunction(db *C.sqlite3, zFunctionName *C.char, nArg C.int, eTextRep C.int, pApp uintptr, xFunc unsafe.Pointer, xStep unsafe.Pointer, xFinal unsafe.Pointer) C.int {
return C._sqlite3_create_function(db, zFunctionName, nArg, eTextRep, C.uintptr_t(pApp), (*[0]byte)(xFunc), (*[0]byte)(xStep), (*[0]byte)(xFinal))
}
// RegisterAggregator makes a Go type available as a SQLite aggregation function.
//
// Because aggregation is incremental, it's implemented in Go with a
// type that has 2 methods: func Step(values) accumulates one row of
// data into the accumulator, and func Done() ret finalizes and
// returns the aggregate value. "values" and "ret" may be any type
// supported by RegisterFunc.
//
// RegisterAggregator takes as implementation a constructor function
// that constructs an instance of the aggregator type each time an
// aggregation begins. The constructor must return a pointer to a
// type, or an interface that implements Step() and Done().
//
// The constructor function and the Step/Done methods may optionally
// return an error in addition to their other return values.
//
// See _example/go_custom_funcs for a detailed example.
func (c *SQLiteConn) RegisterAggregator(name string, impl interface{}, pure bool) error {
var ai aggInfo
ai.constructor = reflect.ValueOf(impl)
t := ai.constructor.Type()
if t.Kind() != reflect.Func {
return errors.New("non-function passed to RegisterAggregator")
}
if t.NumOut() != 1 && t.NumOut() != 2 {
return errors.New("SQLite aggregator constructors must return 1 or 2 values")
}
if t.NumOut() == 2 && !t.Out(1).Implements(reflect.TypeOf((*error)(nil)).Elem()) {
return errors.New("Second return value of SQLite function must be error")
}
if t.NumIn() != 0 {
return errors.New("SQLite aggregator constructors must not have arguments")
}
agg := t.Out(0)
switch agg.Kind() {
case reflect.Ptr, reflect.Interface:
default:
return errors.New("SQlite aggregator constructor must return a pointer object")
}
stepFn, found := agg.MethodByName("Step")
if !found {
return errors.New("SQlite aggregator doesn't have a Step() function")
}
step := stepFn.Type
if step.NumOut() != 0 && step.NumOut() != 1 {
return errors.New("SQlite aggregator Step() function must return 0 or 1 values")
}
if step.NumOut() == 1 && !step.Out(0).Implements(reflect.TypeOf((*error)(nil)).Elem()) {
return errors.New("type of SQlite aggregator Step() return value must be error")
}
stepNArgs := step.NumIn()
start := 0
if agg.Kind() == reflect.Ptr {
// Skip over the method receiver
stepNArgs--
start++
}
if step.IsVariadic() {
stepNArgs--
}
for i := start; i < start+stepNArgs; i++ {
conv, err := callbackArg(step.In(i))
if err != nil {
return err
}
ai.stepArgConverters = append(ai.stepArgConverters, conv)
}
if step.IsVariadic() {
conv, err := callbackArg(t.In(start + stepNArgs).Elem())
if err != nil {
return err
}
ai.stepVariadicConverter = conv
// Pass -1 to sqlite so that it allows any number of
// arguments. The call helper verifies that the minimum number
// of arguments is present for variadic functions.
stepNArgs = -1
}
doneFn, found := agg.MethodByName("Done")
if !found {
return errors.New("SQlite aggregator doesn't have a Done() function")
}
done := doneFn.Type
doneNArgs := done.NumIn()
if agg.Kind() == reflect.Ptr {
// Skip over the method receiver
doneNArgs--
}
if doneNArgs != 0 {
return errors.New("SQlite aggregator Done() function must have no arguments")
}
if done.NumOut() != 1 && done.NumOut() != 2 {
return errors.New("SQLite aggregator Done() function must return 1 or 2 values")
}
if done.NumOut() == 2 && !done.Out(1).Implements(reflect.TypeOf((*error)(nil)).Elem()) {
return errors.New("second return value of SQLite aggregator Done() function must be error")
}
conv, err := callbackRet(done.Out(0))
if err != nil {
return err
}
ai.doneRetConverter = conv
ai.active = make(map[int64]reflect.Value)
ai.next = 1
// ai must outlast the database connection, or we'll have dangling pointers.
c.aggregators = append(c.aggregators, &ai)
cname := C.CString(name)
defer C.free(unsafe.Pointer(cname))
opts := C.SQLITE_UTF8
if pure {
opts |= C.SQLITE_DETERMINISTIC
}
rv := sqlite3CreateFunction(c.db, cname, C.int(stepNArgs), C.int(opts), newHandle(c, &ai), nil, C.stepTrampoline, C.doneTrampoline)
if rv != C.SQLITE_OK {
return c.lastError()
}
return nil
}
// AutoCommit return which currently auto commit or not.
func (c *SQLiteConn) AutoCommit() bool {
return int(C.sqlite3_get_autocommit(c.db)) != 0
}
func (c *SQLiteConn) lastError() error {
return lastError(c.db)
}
func lastError(db *C.sqlite3) error {
rv := C.sqlite3_errcode(db)
if rv == C.SQLITE_OK {
return nil
}
return Error{
Code: ErrNo(rv),
ExtendedCode: ErrNoExtended(C.sqlite3_extended_errcode(db)),
err: C.GoString(C.sqlite3_errmsg(db)),
}
}
// Exec implements Execer.
func (c *SQLiteConn) Exec(query string, args []driver.Value) (driver.Result, error) {
list := make([]namedValue, len(args))
for i, v := range args {
list[i] = namedValue{
Ordinal: i + 1,
Value: v,
}
}
return c.exec(context.Background(), query, list)
}
func (c *SQLiteConn) exec(ctx context.Context, query string, args []namedValue) (driver.Result, error) {
start := 0
for {
s, err := c.prepare(ctx, query)
if err != nil {
return nil, err
}
var res driver.Result
if s.(*SQLiteStmt).s != nil {
na := s.NumInput()
if len(args) < na {
s.Close()
return nil, fmt.Errorf("not enough args to execute query: want %d got %d", na, len(args))
}
for i := 0; i < na; i++ {
args[i].Ordinal -= start
}
res, err = s.(*SQLiteStmt).exec(ctx, args[:na])
if err != nil && err != driver.ErrSkip {
s.Close()
return nil, err
}
args = args[na:]
start += na
}
tail := s.(*SQLiteStmt).t
s.Close()
if tail == "" {
return res, nil
}
query = tail
}
}
type namedValue struct {
Name string
Ordinal int
Value driver.Value
}
// Query implements Queryer.
func (c *SQLiteConn) Query(query string, args []driver.Value) (driver.Rows, error) {
list := make([]namedValue, len(args))
for i, v := range args {
list[i] = namedValue{
Ordinal: i + 1,
Value: v,
}
}
return c.query(context.Background(), query, list)
}
func (c *SQLiteConn) query(ctx context.Context, query string, args []namedValue) (driver.Rows, error) {
start := 0
for {
s, err := c.prepare(ctx, query)
if err != nil {
return nil, err
}
s.(*SQLiteStmt).cls = true
na := s.NumInput()
if len(args) < na {
return nil, fmt.Errorf("not enough args to execute query: want %d got %d", na, len(args))
}
for i := 0; i < na; i++ {
args[i].Ordinal -= start
}
rows, err := s.(*SQLiteStmt).query(ctx, args[:na])
if err != nil && err != driver.ErrSkip {
s.Close()
return rows, err
}
args = args[na:]
start += na
tail := s.(*SQLiteStmt).t
if tail == "" {
return rows, nil
}
rows.Close()
s.Close()
query = tail
}
}
// Begin transaction.
func (c *SQLiteConn) Begin() (driver.Tx, error) {
return c.begin(context.Background())
}
func (c *SQLiteConn) begin(ctx context.Context) (driver.Tx, error) {
if _, err := c.exec(ctx, c.txlock, nil); err != nil {
return nil, err
}
return &SQLiteTx{c}, nil
}
func errorString(err Error) string {
return C.GoString(C.sqlite3_errstr(C.int(err.Code)))
}
// Open database and return a new connection.
//
// A pragma can take either zero or one argument.
// The argument is may be either in parentheses or it may be separated from
// the pragma name by an equal sign. The two syntaxes yield identical results.
// In many pragmas, the argument is a boolean. The boolean can be one of:
// 1 yes true on
// 0 no false off
//
// You can specify a DSN string using a URI as the filename.
// test.db
// file:test.db?cache=shared&mode=memory
// :memory:
// file::memory:
//
// mode
// Access mode of the database.
// https://www.sqlite.org/c3ref/open.html
// Values:
// - ro
// - rw
// - rwc
// - memory
//
// shared
// SQLite Shared-Cache Mode
// https://www.sqlite.org/sharedcache.html
// Values:
// - shared
// - private
//
// immutable=Boolean
// The immutable parameter is a boolean query parameter that indicates
// that the database file is stored on read-only media. When immutable is set,
// SQLite assumes that the database file cannot be changed,
// even by a process with higher privilege,
// and so the database is opened read-only and all locking and change detection is disabled.
// Caution: Setting the immutable property on a database file that
// does in fact change can result in incorrect query results and/or SQLITE_CORRUPT errors.
//
// go-sqlite3 adds the following query parameters to those used by SQLite:
// _loc=XXX
// Specify location of time format. It's possible to specify "auto".
//
// _mutex=XXX
// Specify mutex mode. XXX can be "no", "full".
//
// _txlock=XXX
// Specify locking behavior for transactions. XXX can be "immediate",
// "deferred", "exclusive".
//
// _auto_vacuum=X | _vacuum=X
// 0 | none - Auto Vacuum disabled
// 1 | full - Auto Vacuum FULL
// 2 | incremental - Auto Vacuum Incremental
//
// _busy_timeout=XXX"| _timeout=XXX
// Specify value for sqlite3_busy_timeout.
//
// _case_sensitive_like=Boolean | _cslike=Boolean
// https://www.sqlite.org/pragma.html#pragma_case_sensitive_like
// Default or disabled the LIKE operation is case-insensitive.
// When enabling this options behaviour of LIKE will become case-sensitive.
//
// _defer_foreign_keys=Boolean | _defer_fk=Boolean
// Defer Foreign Keys until outermost transaction is committed.
//
// _foreign_keys=Boolean | _fk=Boolean
// Enable or disable enforcement of foreign keys.
//
// _ignore_check_constraints=Boolean
// This pragma enables or disables the enforcement of CHECK constraints.
// The default setting is off, meaning that CHECK constraints are enforced by default.
//
// _journal_mode=MODE | _journal=MODE
// Set journal mode for the databases associated with the current connection.
// https://www.sqlite.org/pragma.html#pragma_journal_mode
//
// _locking_mode=X | _locking=X
// Sets the database connection locking-mode.
// The locking-mode is either NORMAL or EXCLUSIVE.
// https://www.sqlite.org/pragma.html#pragma_locking_mode
//
// _query_only=Boolean
// The query_only pragma prevents all changes to database files when enabled.
//
// _recursive_triggers=Boolean | _rt=Boolean
// Enable or disable recursive triggers.
//
// _secure_delete=Boolean|FAST
// When secure_delete is on, SQLite overwrites deleted content with zeros.
// https://www.sqlite.org/pragma.html#pragma_secure_delete
//
// _synchronous=X | _sync=X
// Change the setting of the "synchronous" flag.
// https://www.sqlite.org/pragma.html#pragma_synchronous
//
// _writable_schema=Boolean
// When this pragma is on, the SQLITE_MASTER tables in which database
// can be changed using ordinary UPDATE, INSERT, and DELETE statements.
// Warning: misuse of this pragma can easily result in a corrupt database file.
//
//
func (d *SQLiteDriver) Open(dsn string) (driver.Conn, error) {
if C.sqlite3_threadsafe() == 0 {
return nil, errors.New("sqlite library was not compiled for thread-safe operation")
}
var pkey string
// Options
var loc *time.Location
authCreate := false
authUser := ""
authPass := ""
authCrypt := ""
authSalt := ""
mutex := C.int(C.SQLITE_OPEN_FULLMUTEX)
txlock := "BEGIN"
// PRAGMA's
autoVacuum := -1
busyTimeout := 5000
caseSensitiveLike := -1
deferForeignKeys := -1
foreignKeys := -1
ignoreCheckConstraints := -1
journalMode := "DELETE"
lockingMode := "NORMAL"
queryOnly := -1
recursiveTriggers := -1
secureDelete := "DEFAULT"
synchronousMode := "NORMAL"
writableSchema := -1
pos := strings.IndexRune(dsn, '?')
if pos >= 1 {
params, err := url.ParseQuery(dsn[pos+1:])
if err != nil {
return nil, err
}
// Authentication
if _, ok := params["_auth"]; ok {
authCreate = true
}
if val := params.Get("_auth_user"); val != "" {
authUser = val
}
if val := params.Get("_auth_pass"); val != "" {
authPass = val
}
if val := params.Get("_auth_crypt"); val != "" {
authCrypt = val
}
if val := params.Get("_auth_salt"); val != "" {
authSalt = val
}
// _loc
if val := params.Get("_loc"); val != "" {
switch strings.ToLower(val) {
case "auto":
loc = time.Local
default:
loc, err = time.LoadLocation(val)
if err != nil {
return nil, fmt.Errorf("Invalid _loc: %v: %v", val, err)
}
}
}
// _mutex
if val := params.Get("_mutex"); val != "" {
switch strings.ToLower(val) {
case "no":
mutex = C.SQLITE_OPEN_NOMUTEX
case "full":
mutex = C.SQLITE_OPEN_FULLMUTEX
default:
return nil, fmt.Errorf("Invalid _mutex: %v", val)
}
}
// _txlock
if val := params.Get("_txlock"); val != "" {
switch strings.ToLower(val) {
case "immediate":
txlock = "BEGIN IMMEDIATE"
case "exclusive":
txlock = "BEGIN EXCLUSIVE"
case "deferred":
txlock = "BEGIN"
default:
return nil, fmt.Errorf("Invalid _txlock: %v", val)
}
}
// Auto Vacuum (_vacuum)
//
// https://www.sqlite.org/pragma.html#pragma_auto_vacuum
//
pkey = "" // Reset pkey
if _, ok := params["_auto_vacuum"]; ok {
pkey = "_auto_vacuum"
}
if _, ok := params["_vacuum"]; ok {
pkey = "_vacuum"
}
if val := params.Get(pkey); val != "" {
switch strings.ToLower(val) {
case "0", "none":
autoVacuum = 0
case "1", "full":
autoVacuum = 1
case "2", "incremental":
autoVacuum = 2
default:
return nil, fmt.Errorf("Invalid _auto_vacuum: %v, expecting value of '0 NONE 1 FULL 2 INCREMENTAL'", val)
}
}
// Busy Timeout (_busy_timeout)
//
// https://www.sqlite.org/pragma.html#pragma_busy_timeout
//
pkey = "" // Reset pkey
if _, ok := params["_busy_timeout"]; ok {
pkey = "_busy_timeout"
}
if _, ok := params["_timeout"]; ok {
pkey = "_timeout"
}
if val := params.Get(pkey); val != "" {
iv, err := strconv.ParseInt(val, 10, 64)
if err != nil {
return nil, fmt.Errorf("Invalid _busy_timeout: %v: %v", val, err)
}
busyTimeout = int(iv)
}
// Case Sensitive Like (_cslike)
//
// https://www.sqlite.org/pragma.html#pragma_case_sensitive_like
//
pkey = "" // Reset pkey
if _, ok := params["_case_sensitive_like"]; ok {
pkey = "_case_sensitive_like"
}
if _, ok := params["_cslike"]; ok {
pkey = "_cslike"
}
if val := params.Get(pkey); val != "" {
switch strings.ToLower(val) {
case "0", "no", "false", "off":
caseSensitiveLike = 0
case "1", "yes", "true", "on":
caseSensitiveLike = 1
default:
return nil, fmt.Errorf("Invalid _case_sensitive_like: %v, expecting boolean value of '0 1 false true no yes off on'", val)
}
}
// Defer Foreign Keys (_defer_foreign_keys | _defer_fk)
//
// https://www.sqlite.org/pragma.html#pragma_defer_foreign_keys
//
pkey = "" // Reset pkey
if _, ok := params["_defer_foreign_keys"]; ok {
pkey = "_defer_foreign_keys"
}
if _, ok := params["_defer_fk"]; ok {
pkey = "_defer_fk"
}
if val := params.Get(pkey); val != "" {
switch strings.ToLower(val) {
case "0", "no", "false", "off":
deferForeignKeys = 0
case "1", "yes", "true", "on":
deferForeignKeys = 1
default:
return nil, fmt.Errorf("Invalid _defer_foreign_keys: %v, expecting boolean value of '0 1 false true no yes off on'", val)
}
}
// Foreign Keys (_foreign_keys | _fk)
//
// https://www.sqlite.org/pragma.html#pragma_foreign_keys
//
pkey = "" // Reset pkey
if _, ok := params["_foreign_keys"]; ok {
pkey = "_foreign_keys"
}
if _, ok := params["_fk"]; ok {
pkey = "_fk"
}
if val := params.Get(pkey); val != "" {
switch strings.ToLower(val) {
case "0", "no", "false", "off":
foreignKeys = 0
case "1", "yes", "true", "on":
foreignKeys = 1
default:
return nil, fmt.Errorf("Invalid _foreign_keys: %v, expecting boolean value of '0 1 false true no yes off on'", val)
}
}
// Ignore CHECK Constrains (_ignore_check_constraints)
//
// https://www.sqlite.org/pragma.html#pragma_ignore_check_constraints
//
if val := params.Get("_ignore_check_constraints"); val != "" {
switch strings.ToLower(val) {
case "0", "no", "false", "off":
ignoreCheckConstraints = 0
case "1", "yes", "true", "on":
ignoreCheckConstraints = 1
default:
return nil, fmt.Errorf("Invalid _ignore_check_constraints: %v, expecting boolean value of '0 1 false true no yes off on'", val)
}
}
// Journal Mode (_journal_mode | _journal)
//
// https://www.sqlite.org/pragma.html#pragma_journal_mode
//
pkey = "" // Reset pkey
if _, ok := params["_journal_mode"]; ok {
pkey = "_journal_mode"
}
if _, ok := params["_journal"]; ok {
pkey = "_journal"
}
if val := params.Get(pkey); val != "" {
switch strings.ToUpper(val) {
case "DELETE", "TRUNCATE", "PERSIST", "MEMORY", "OFF":
journalMode = strings.ToUpper(val)
case "WAL":
journalMode = strings.ToUpper(val)
// For WAL Mode set Synchronous Mode to 'NORMAL'
// See https://www.sqlite.org/pragma.html#pragma_synchronous
synchronousMode = "NORMAL"
default:
return nil, fmt.Errorf("Invalid _journal: %v, expecting value of 'DELETE TRUNCATE PERSIST MEMORY WAL OFF'", val)
}
}
// Locking Mode (_locking)
//
// https://www.sqlite.org/pragma.html#pragma_locking_mode
//
pkey = "" // Reset pkey
if _, ok := params["_locking_mode"]; ok {
pkey = "_locking_mode"
}
if _, ok := params["_locking"]; ok {
pkey = "_locking"
}
if val := params.Get("_locking"); val != "" {
switch strings.ToUpper(val) {
case "NORMAL", "EXCLUSIVE":
lockingMode = strings.ToUpper(val)
default:
return nil, fmt.Errorf("Invalid _locking_mode: %v, expecting value of 'NORMAL EXCLUSIVE", val)
}
}
// Query Only (_query_only)
//
// https://www.sqlite.org/pragma.html#pragma_query_only
//
if val := params.Get("_query_only"); val != "" {
switch strings.ToLower(val) {
case "0", "no", "false", "off":
queryOnly = 0
case "1", "yes", "true", "on":
queryOnly = 1
default:
return nil, fmt.Errorf("Invalid _query_only: %v, expecting boolean value of '0 1 false true no yes off on'", val)
}
}
// Recursive Triggers (_recursive_triggers)
//
// https://www.sqlite.org/pragma.html#pragma_recursive_triggers
//
pkey = "" // Reset pkey
if _, ok := params["_recursive_triggers"]; ok {
pkey = "_recursive_triggers"
}
if _, ok := params["_rt"]; ok {
pkey = "_rt"
}
if val := params.Get(pkey); val != "" {
switch strings.ToLower(val) {
case "0", "no", "false", "off":
recursiveTriggers = 0
case "1", "yes", "true", "on":
recursiveTriggers = 1
default:
return nil, fmt.Errorf("Invalid _recursive_triggers: %v, expecting boolean value of '0 1 false true no yes off on'", val)
}
}
// Secure Delete (_secure_delete)
//
// https://www.sqlite.org/pragma.html#pragma_secure_delete
//
if val := params.Get("_secure_delete"); val != "" {
switch strings.ToLower(val) {
case "0", "no", "false", "off":
secureDelete = "OFF"
case "1", "yes", "true", "on":
secureDelete = "ON"
case "fast":
secureDelete = "FAST"
default:
return nil, fmt.Errorf("Invalid _secure_delete: %v, expecting boolean value of '0 1 false true no yes off on fast'", val)
}
}
// Synchronous Mode (_synchronous | _sync)
//
// https://www.sqlite.org/pragma.html#pragma_synchronous
//
pkey = "" // Reset pkey
if _, ok := params["_synchronous"]; ok {
pkey = "_synchronous"
}
if _, ok := params["_sync"]; ok {
pkey = "_sync"
}
if val := params.Get(pkey); val != "" {
switch strings.ToUpper(val) {
case "0", "OFF", "1", "NORMAL", "2", "FULL", "3", "EXTRA":
synchronousMode = strings.ToUpper(val)
default:
return nil, fmt.Errorf("Invalid _synchronous: %v, expecting value of '0 OFF 1 NORMAL 2 FULL 3 EXTRA'", val)
}
}
// Writable Schema (_writeable_schema)
//
// https://www.sqlite.org/pragma.html#pragma_writeable_schema
//
if val := params.Get("_writable_schema"); val != "" {
switch strings.ToLower(val) {
case "0", "no", "false", "off":
writableSchema = 0
case "1", "yes", "true", "on":
writableSchema = 1
default:
return nil, fmt.Errorf("Invalid _writable_schema: %v, expecting boolean value of '0 1 false true no yes off on'", val)
}
}
if !strings.HasPrefix(dsn, "file:") {
dsn = dsn[:pos]
}
}
var db *C.sqlite3
name := C.CString(dsn)
defer C.free(unsafe.Pointer(name))
rv := C._sqlite3_open_v2(name, &db,
mutex|C.SQLITE_OPEN_READWRITE|C.SQLITE_OPEN_CREATE,
nil)
if rv != 0 {
return nil, Error{Code: ErrNo(rv)}
}
if db == nil {
return nil, errors.New("sqlite succeeded without returning a database")
}
rv = C.sqlite3_busy_timeout(db, C.int(busyTimeout))
if rv != C.SQLITE_OK {
C.sqlite3_close_v2(db)
return nil, Error{Code: ErrNo(rv)}
}
exec := func(s string) error {
cs := C.CString(s)
rv := C.sqlite3_exec(db, cs, nil, nil, nil)
C.free(unsafe.Pointer(cs))
if rv != C.SQLITE_OK {
return lastError(db)
}
return nil
}
// USER AUTHENTICATION
//
// User Authentication is always performed even when
// sqlite_userauth is not compiled in, because without user authentication
// the authentication is a no-op.
//
// Workflow
// - Authenticate
// ON::SUCCESS => Continue
// ON::SQLITE_AUTH => Return error and exit Open(...)
//
// - Activate User Authentication
// Check if the user wants to activate User Authentication.
// If so then first create a temporary AuthConn to the database
// This is possible because we are already succesfully authenticated.
//
// - Check if `sqlite_user`` table exists
// YES => Add the provided user from DSN as Admin User and
// activate user authentication.
// NO => Continue
//
// Create connection to SQLite
conn := &SQLiteConn{db: db, loc: loc, txlock: txlock}
// Password Cipher has to be registerd before authentication
if len(authCrypt) > 0 {
switch strings.ToUpper(authCrypt) {
case "SHA1":
if err := conn.RegisterFunc("sqlite_crypt", CryptEncoderSHA1, true); err != nil {
return nil, fmt.Errorf("CryptEncoderSHA1: %s", err)
}
case "SSHA1":
if len(authSalt) == 0 {
return nil, fmt.Errorf("_auth_crypt=ssha1, requires _auth_salt")
}
if err := conn.RegisterFunc("sqlite_crypt", CryptEncoderSSHA1(authSalt), true); err != nil {
return nil, fmt.Errorf("CryptEncoderSSHA1: %s", err)
}
case "SHA256":
if err := conn.RegisterFunc("sqlite_crypt", CryptEncoderSHA256, true); err != nil {
return nil, fmt.Errorf("CryptEncoderSHA256: %s", err)
}
case "SSHA256":
if len(authSalt) == 0 {
return nil, fmt.Errorf("_auth_crypt=ssha256, requires _auth_salt")
}
if err := conn.RegisterFunc("sqlite_crypt", CryptEncoderSSHA256(authSalt), true); err != nil {
return nil, fmt.Errorf("CryptEncoderSSHA256: %s", err)
}
case "SHA384":
if err := conn.RegisterFunc("sqlite_crypt", CryptEncoderSHA384, true); err != nil {
return nil, fmt.Errorf("CryptEncoderSHA384: %s", err)
}
case "SSHA384":
if len(authSalt) == 0 {
return nil, fmt.Errorf("_auth_crypt=ssha384, requires _auth_salt")
}
if err := conn.RegisterFunc("sqlite_crypt", CryptEncoderSSHA384(authSalt), true); err != nil {
return nil, fmt.Errorf("CryptEncoderSSHA384: %s", err)
}
case "SHA512":
if err := conn.RegisterFunc("sqlite_crypt", CryptEncoderSHA512, true); err != nil {
return nil, fmt.Errorf("CryptEncoderSHA512: %s", err)
}
case "SSHA512":
if len(authSalt) == 0 {
return nil, fmt.Errorf("_auth_crypt=ssha512, requires _auth_salt")
}
if err := conn.RegisterFunc("sqlite_crypt", CryptEncoderSSHA512(authSalt), true); err != nil {
return nil, fmt.Errorf("CryptEncoderSSHA512: %s", err)
}
}
}
// Preform Authentication
if err := conn.Authenticate(authUser, authPass); err != nil {
return nil, err
}
// Register: authenticate
// Authenticate will perform an authentication of the provided username
// and password against the database.
//
// If a database contains the SQLITE_USER table, then the
// call to Authenticate must be invoked with an
// appropriate username and password prior to enable read and write
//access to the database.
//
// Return SQLITE_OK on success or SQLITE_ERROR if the username/password
// combination is incorrect or unknown.
//
// If the SQLITE_USER table is not present in the database file, then
// this interface is a harmless no-op returnning SQLITE_OK.
if err := conn.RegisterFunc("authenticate", conn.authenticate, true); err != nil {
return nil, err
}
//
// Register: auth_user_add
// auth_user_add can be used (by an admin user only)
// to create a new user. When called on a no-authentication-required
// database, this routine converts the database into an authentication-
// required database, automatically makes the added user an
// administrator, and logs in the current connection as that user.
// The AuthUserAdd only works for the "main" database, not
// for any ATTACH-ed databases. Any call to AuthUserAdd by a
// non-admin user results in an error.
if err := conn.RegisterFunc("auth_user_add", conn.authUserAdd, true); err != nil {
return nil, err
}
//
// Register: auth_user_change
// auth_user_change can be used to change a users
// login credentials or admin privilege. Any user can change their own
// login credentials. Only an admin user can change another users login
// credentials or admin privilege setting. No user may change their own
// admin privilege setting.
if err := conn.RegisterFunc("auth_user_change", conn.authUserChange, true); err != nil {
return nil, err
}
//
// Register: auth_user_delete
// auth_user_delete can be used (by an admin user only)
// to delete a user. The currently logged-in user cannot be deleted,
// which guarantees that there is always an admin user and hence that
// the database cannot be converted into a no-authentication-required
// database.
if err := conn.RegisterFunc("auth_user_delete", conn.authUserDelete, true); err != nil {
return nil, err
}
// Register: auth_enabled
// auth_enabled can be used to check if user authentication is enabled
if err := conn.RegisterFunc("auth_enabled", conn.authEnabled, true); err != nil {
return nil, err
}
// Auto Vacuum
// Moved auto_vacuum command, the user preference for auto_vacuum needs to be implemented directly after
// the authentication and before the sqlite_user table gets created if the user
// decides to activate User Authentication because
// auto_vacuum needs to be set before any tables are created
// and activating user authentication creates the internal table `sqlite_user`.
if autoVacuum > -1 {
if err := exec(fmt.Sprintf("PRAGMA auto_vacuum = %d;", autoVacuum)); err != nil {
C.sqlite3_close_v2(db)
return nil, err
}
}
// Check if user wants to activate User Authentication
if authCreate {
// Before going any further, we need to check that the user
// has provided an username and password within the DSN.
// We are not allowed to continue.
if len(authUser) < 0 {
return nil, fmt.Errorf("Missing '_auth_user' while user authentication was requested with '_auth'")
}
if len(authPass) < 0 {
return nil, fmt.Errorf("Missing '_auth_pass' while user authentication was requested with '_auth'")
}
// Check if User Authentication is Enabled
authExists := conn.AuthEnabled()
if !authExists {
if err := conn.AuthUserAdd(authUser, authPass, true); err != nil {
return nil, err
}
}
}
// Case Sensitive LIKE
if caseSensitiveLike > -1 {
if err := exec(fmt.Sprintf("PRAGMA case_sensitive_like = %d;", caseSensitiveLike)); err != nil {
C.sqlite3_close_v2(db)
return nil, err
}
}
// Defer Foreign Keys
if deferForeignKeys > -1 {
if err := exec(fmt.Sprintf("PRAGMA defer_foreign_keys = %d;", deferForeignKeys)); err != nil {
C.sqlite3_close_v2(db)
return nil, err
}
}
// Forgein Keys
if foreignKeys > -1 {
if err := exec(fmt.Sprintf("PRAGMA foreign_keys = %d;", foreignKeys)); err != nil {
C.sqlite3_close_v2(db)
return nil, err
}
}
// Ignore CHECK Constraints
if ignoreCheckConstraints > -1 {
if err := exec(fmt.Sprintf("PRAGMA ignore_check_constraints = %d;", ignoreCheckConstraints)); err != nil {
C.sqlite3_close_v2(db)
return nil, err
}
}
// Journal Mode
// Because default Journal Mode is DELETE this PRAGMA can always be executed.
if err := exec(fmt.Sprintf("PRAGMA journal_mode = %s;", journalMode)); err != nil {
C.sqlite3_close_v2(db)
return nil, err
}
// Locking Mode
// Because the default is NORMAL and this is not changed in this package
// by using the compile time SQLITE_DEFAULT_LOCKING_MODE this PRAGMA can always be executed
if err := exec(fmt.Sprintf("PRAGMA locking_mode = %s;", lockingMode)); err != nil {
C.sqlite3_close_v2(db)
return nil, err
}
// Query Only
if queryOnly > -1 {
if err := exec(fmt.Sprintf("PRAGMA query_only = %d;", queryOnly)); err != nil {
C.sqlite3_close_v2(db)
return nil, err
}
}
// Recursive Triggers
if recursiveTriggers > -1 {
if err := exec(fmt.Sprintf("PRAGMA recursive_triggers = %d;", recursiveTriggers)); err != nil {
C.sqlite3_close_v2(db)
return nil, err
}
}
// Secure Delete
//
// Because this package can set the compile time flag SQLITE_SECURE_DELETE with a build tag
// the default value for secureDelete var is 'DEFAULT' this way
// you can compile with secure_delete 'ON' and disable it for a specific database connection.
if secureDelete != "DEFAULT" {
if err := exec(fmt.Sprintf("PRAGMA secure_delete = %s;", secureDelete)); err != nil {
C.sqlite3_close_v2(db)
return nil, err
}
}
// Synchronous Mode
//
// Because default is NORMAL this statement is always executed
if err := exec(fmt.Sprintf("PRAGMA synchronous = %s;", synchronousMode)); err != nil {
C.sqlite3_close_v2(db)
return nil, err
}
// Writable Schema
if writableSchema > -1 {
if err := exec(fmt.Sprintf("PRAGMA writable_schema = %d;", writableSchema)); err != nil {
C.sqlite3_close_v2(db)
return nil, err
}
}
if len(d.Extensions) > 0 {
if err := conn.loadExtensions(d.Extensions); err != nil {
conn.Close()
return nil, err
}
}
if d.ConnectHook != nil {
if err := d.ConnectHook(conn); err != nil {
conn.Close()
return nil, err
}
}
runtime.SetFinalizer(conn, (*SQLiteConn).Close)
return conn, nil
}
// Close the connection.
func (c *SQLiteConn) Close() error {
rv := C.sqlite3_close_v2(c.db)
if rv != C.SQLITE_OK {
return c.lastError()
}
deleteHandles(c)
c.mu.Lock()
c.db = nil
c.mu.Unlock()
runtime.SetFinalizer(c, nil)
return nil
}
func (c *SQLiteConn) dbConnOpen() bool {
if c == nil {
return false
}
c.mu.Lock()
defer c.mu.Unlock()
return c.db != nil
}
// Prepare the query string. Return a new statement.
func (c *SQLiteConn) Prepare(query string) (driver.Stmt, error) {
return c.prepare(context.Background(), query)
}
func (c *SQLiteConn) prepare(ctx context.Context, query string) (driver.Stmt, error) {
pquery := C.CString(query)
defer C.free(unsafe.Pointer(pquery))
var s *C.sqlite3_stmt
var tail *C.char
rv := C.sqlite3_prepare_v2(c.db, pquery, -1, &s, &tail)
if rv != C.SQLITE_OK {
return nil, c.lastError()
}
var t string
if tail != nil && *tail != '\000' {
t = strings.TrimSpace(C.GoString(tail))
}
ss := &SQLiteStmt{c: c, s: s, t: t}
runtime.SetFinalizer(ss, (*SQLiteStmt).Close)
return ss, nil
}
// Run-Time Limit Categories.
// See: http://www.sqlite.org/c3ref/c_limit_attached.html
const (
SQLITE_LIMIT_LENGTH = C.SQLITE_LIMIT_LENGTH
SQLITE_LIMIT_SQL_LENGTH = C.SQLITE_LIMIT_SQL_LENGTH
SQLITE_LIMIT_COLUMN = C.SQLITE_LIMIT_COLUMN
SQLITE_LIMIT_EXPR_DEPTH = C.SQLITE_LIMIT_EXPR_DEPTH
SQLITE_LIMIT_COMPOUND_SELECT = C.SQLITE_LIMIT_COMPOUND_SELECT
SQLITE_LIMIT_VDBE_OP = C.SQLITE_LIMIT_VDBE_OP
SQLITE_LIMIT_FUNCTION_ARG = C.SQLITE_LIMIT_FUNCTION_ARG
SQLITE_LIMIT_ATTACHED = C.SQLITE_LIMIT_ATTACHED
SQLITE_LIMIT_LIKE_PATTERN_LENGTH = C.SQLITE_LIMIT_LIKE_PATTERN_LENGTH
SQLITE_LIMIT_VARIABLE_NUMBER = C.SQLITE_LIMIT_VARIABLE_NUMBER
SQLITE_LIMIT_TRIGGER_DEPTH = C.SQLITE_LIMIT_TRIGGER_DEPTH
SQLITE_LIMIT_WORKER_THREADS = C.SQLITE_LIMIT_WORKER_THREADS
)
// GetLimit returns the current value of a run-time limit.
// See: sqlite3_limit, http://www.sqlite.org/c3ref/limit.html
func (c *SQLiteConn) GetLimit(id int) int {
return int(C._sqlite3_limit(c.db, C.int(id), -1))
}
// SetLimit changes the value of a run-time limits.
// Then this method returns the prior value of the limit.
// See: sqlite3_limit, http://www.sqlite.org/c3ref/limit.html
func (c *SQLiteConn) SetLimit(id int, newVal int) int {
return int(C._sqlite3_limit(c.db, C.int(id), C.int(newVal)))
}
// Close the statement.
func (s *SQLiteStmt) Close() error {
s.mu.Lock()
defer s.mu.Unlock()
if s.closed {
return nil
}
s.closed = true
if !s.c.dbConnOpen() {
return errors.New("sqlite statement with already closed database connection")
}
rv := C.sqlite3_finalize(s.s)
s.s = nil
if rv != C.SQLITE_OK {
return s.c.lastError()
}
runtime.SetFinalizer(s, nil)
return nil
}
// NumInput return a number of parameters.
func (s *SQLiteStmt) NumInput() int {
return int(C.sqlite3_bind_parameter_count(s.s))
}
type bindArg struct {
n int
v driver.Value
}
var placeHolder = []byte{0}
func (s *SQLiteStmt) bind(args []namedValue) error {
rv := C.sqlite3_reset(s.s)
if rv != C.SQLITE_ROW && rv != C.SQLITE_OK && rv != C.SQLITE_DONE {
return s.c.lastError()
}
for i, v := range args {
if v.Name != "" {
cname := C.CString(":" + v.Name)
args[i].Ordinal = int(C.sqlite3_bind_parameter_index(s.s, cname))
C.free(unsafe.Pointer(cname))
}
}
for _, arg := range args {
n := C.int(arg.Ordinal)
switch v := arg.Value.(type) {
case nil:
rv = C.sqlite3_bind_null(s.s, n)
case string:
if len(v) == 0 {
rv = C._sqlite3_bind_text(s.s, n, (*C.char)(unsafe.Pointer(&placeHolder[0])), C.int(0))
} else {
b := []byte(v)
rv = C._sqlite3_bind_text(s.s, n, (*C.char)(unsafe.Pointer(&b[0])), C.int(len(b)))
}
case int64:
rv = C.sqlite3_bind_int64(s.s, n, C.sqlite3_int64(v))
case bool:
if v {
rv = C.sqlite3_bind_int(s.s, n, 1)
} else {
rv = C.sqlite3_bind_int(s.s, n, 0)
}
case float64:
rv = C.sqlite3_bind_double(s.s, n, C.double(v))
case []byte:
ln := len(v)
if ln == 0 {
v = placeHolder
}
rv = C._sqlite3_bind_blob(s.s, n, unsafe.Pointer(&v[0]), C.int(ln))
case time.Time:
b := []byte(v.Format(SQLiteTimestampFormats[0]))
rv = C._sqlite3_bind_text(s.s, n, (*C.char)(unsafe.Pointer(&b[0])), C.int(len(b)))
}
if rv != C.SQLITE_OK {
return s.c.lastError()
}
}
return nil
}
// Query the statement with arguments. Return records.
func (s *SQLiteStmt) Query(args []driver.Value) (driver.Rows, error) {
list := make([]namedValue, len(args))
for i, v := range args {
list[i] = namedValue{
Ordinal: i + 1,
Value: v,
}
}
return s.query(context.Background(), list)
}
func (s *SQLiteStmt) query(ctx context.Context, args []namedValue) (driver.Rows, error) {
if err := s.bind(args); err != nil {
return nil, err
}
rows := &SQLiteRows{
s: s,
nc: int(C.sqlite3_column_count(s.s)),
cols: nil,
decltype: nil,
cls: s.cls,
closed: false,
done: make(chan struct{}),
}
if ctxdone := ctx.Done(); ctxdone != nil {
go func(db *C.sqlite3) {
select {
case <-ctxdone:
select {
case <-rows.done:
default:
C.sqlite3_interrupt(db)
rows.Close()
}
case <-rows.done:
}
}(s.c.db)
}
return rows, nil
}
// LastInsertId teturn last inserted ID.
func (r *SQLiteResult) LastInsertId() (int64, error) {
return r.id, nil
}
// RowsAffected return how many rows affected.
func (r *SQLiteResult) RowsAffected() (int64, error) {
return r.changes, nil
}
// Exec execute the statement with arguments. Return result object.
func (s *SQLiteStmt) Exec(args []driver.Value) (driver.Result, error) {
list := make([]namedValue, len(args))
for i, v := range args {
list[i] = namedValue{
Ordinal: i + 1,
Value: v,
}
}
return s.exec(context.Background(), list)
}
func (s *SQLiteStmt) exec(ctx context.Context, args []namedValue) (driver.Result, error) {
if err := s.bind(args); err != nil {
C.sqlite3_reset(s.s)
C.sqlite3_clear_bindings(s.s)
return nil, err
}
if ctxdone := ctx.Done(); ctxdone != nil {
done := make(chan struct{})
defer close(done)
go func(db *C.sqlite3) {
select {
case <-done:
case <-ctxdone:
select {
case <-done:
default:
C.sqlite3_interrupt(db)
}
}
}(s.c.db)
}
var rowid, changes C.longlong
rv := C._sqlite3_step(s.s, &rowid, &changes)
if rv != C.SQLITE_ROW && rv != C.SQLITE_OK && rv != C.SQLITE_DONE {
err := s.c.lastError()
C.sqlite3_reset(s.s)
C.sqlite3_clear_bindings(s.s)
return nil, err
}
return &SQLiteResult{id: int64(rowid), changes: int64(changes)}, nil
}
// Close the rows.
func (rc *SQLiteRows) Close() error {
rc.s.mu.Lock()
if rc.s.closed || rc.closed {
rc.s.mu.Unlock()
return nil
}
rc.closed = true
if rc.done != nil {
close(rc.done)
}
if rc.cls {
rc.s.mu.Unlock()
return rc.s.Close()
}
rv := C.sqlite3_reset(rc.s.s)
if rv != C.SQLITE_OK {
rc.s.mu.Unlock()
return rc.s.c.lastError()
}
rc.s.mu.Unlock()
return nil
}
// Columns return column names.
func (rc *SQLiteRows) Columns() []string {
rc.s.mu.Lock()
defer rc.s.mu.Unlock()
if rc.s.s != nil && rc.nc != len(rc.cols) {
rc.cols = make([]string, rc.nc)
for i := 0; i < rc.nc; i++ {
rc.cols[i] = C.GoString(C.sqlite3_column_name(rc.s.s, C.int(i)))
}
}
return rc.cols
}
func (rc *SQLiteRows) declTypes() []string {
if rc.s.s != nil && rc.decltype == nil {
rc.decltype = make([]string, rc.nc)
for i := 0; i < rc.nc; i++ {
rc.decltype[i] = strings.ToLower(C.GoString(C.sqlite3_column_decltype(rc.s.s, C.int(i))))
}
}
return rc.decltype
}
// DeclTypes return column types.
func (rc *SQLiteRows) DeclTypes() []string {
rc.s.mu.Lock()
defer rc.s.mu.Unlock()
return rc.declTypes()
}
// Next move cursor to next.
func (rc *SQLiteRows) Next(dest []driver.Value) error {
if rc.s.closed {
return io.EOF
}
rc.s.mu.Lock()
defer rc.s.mu.Unlock()
rv := C.sqlite3_step(rc.s.s)
if rv == C.SQLITE_DONE {
return io.EOF
}
if rv != C.SQLITE_ROW {
rv = C.sqlite3_reset(rc.s.s)
if rv != C.SQLITE_OK {
return rc.s.c.lastError()
}
return nil
}
rc.declTypes()
for i := range dest {
switch C.sqlite3_column_type(rc.s.s, C.int(i)) {
case C.SQLITE_INTEGER:
val := int64(C.sqlite3_column_int64(rc.s.s, C.int(i)))
switch rc.decltype[i] {
case columnTimestamp, columnDatetime, columnDate:
var t time.Time
// Assume a millisecond unix timestamp if it's 13 digits -- too
// large to be a reasonable timestamp in seconds.
if val > 1e12 || val < -1e12 {
val *= int64(time.Millisecond) // convert ms to nsec
t = time.Unix(0, val)
} else {
t = time.Unix(val, 0)
}
t = t.UTC()
if rc.s.c.loc != nil {
t = t.In(rc.s.c.loc)
}
dest[i] = t
case "boolean":
dest[i] = val > 0
default:
dest[i] = val
}
case C.SQLITE_FLOAT:
dest[i] = float64(C.sqlite3_column_double(rc.s.s, C.int(i)))
case C.SQLITE_BLOB:
p := C.sqlite3_column_blob(rc.s.s, C.int(i))
if p == nil {
dest[i] = nil
continue
}
n := int(C.sqlite3_column_bytes(rc.s.s, C.int(i)))
switch dest[i].(type) {
case sql.RawBytes:
dest[i] = (*[1 << 30]byte)(p)[0:n]
default:
slice := make([]byte, n)
copy(slice[:], (*[1 << 30]byte)(p)[0:n])
dest[i] = slice
}
case C.SQLITE_NULL:
dest[i] = nil
case C.SQLITE_TEXT:
var err error
var timeVal time.Time
n := int(C.sqlite3_column_bytes(rc.s.s, C.int(i)))
s := C.GoStringN((*C.char)(unsafe.Pointer(C.sqlite3_column_text(rc.s.s, C.int(i)))), C.int(n))
switch rc.decltype[i] {
case columnTimestamp, columnDatetime, columnDate:
var t time.Time
s = strings.TrimSuffix(s, "Z")
for _, format := range SQLiteTimestampFormats {
if timeVal, err = time.ParseInLocation(format, s, time.UTC); err == nil {
t = timeVal
break
}
}
if err != nil {
// The column is a time value, so return the zero time on parse failure.
t = time.Time{}
}
if rc.s.c.loc != nil {
t = t.In(rc.s.c.loc)
}
dest[i] = t
default:
dest[i] = []byte(s)
}
}
}
return nil
}