// Copyright (C) 2014 Yasuhiro Matsumoto . // Copyright (C) 2018 G.J.R. Timmer . // // Use of this source code is governed by an MIT-style // license that can be found in the LICENSE file. // +build cgo package sqlite3 /* #cgo CFLAGS: -std=gnu99 #cgo CFLAGS: -DSQLITE_ENABLE_RTREE #cgo CFLAGS: -DSQLITE_THREADSAFE=1 #cgo CFLAGS: -DHAVE_USLEEP=1 #cgo CFLAGS: -DSQLITE_ENABLE_FTS3 #cgo CFLAGS: -DSQLITE_ENABLE_FTS3_PARENTHESIS #cgo CFLAGS: -DSQLITE_ENABLE_FTS4_UNICODE61 #cgo CFLAGS: -DSQLITE_TRACE_SIZE_LIMIT=15 #cgo CFLAGS: -DSQLITE_OMIT_DEPRECATED #cgo CFLAGS: -DSQLITE_DISABLE_INTRINSIC #cgo CFLAGS: -DSQLITE_DEFAULT_WAL_SYNCHRONOUS=1 #cgo CFLAGS: -DSQLITE_ENABLE_UPDATE_DELETE_LIMIT #cgo CFLAGS: -Wno-deprecated-declarations #cgo linux,!android CFLAGS: -DHAVE_PREAD64=1 -DHAVE_PWRITE64=1 #ifndef USE_LIBSQLITE3 #include #else #include #endif #include #include #ifdef __CYGWIN__ # include #endif #ifndef SQLITE_OPEN_READWRITE # define SQLITE_OPEN_READWRITE 0 #endif #ifndef SQLITE_OPEN_FULLMUTEX # define SQLITE_OPEN_FULLMUTEX 0 #endif #ifndef SQLITE_DETERMINISTIC # define SQLITE_DETERMINISTIC 0 #endif static int _sqlite3_open_v2(const char *filename, sqlite3 **ppDb, int flags, const char *zVfs) { #ifdef SQLITE_OPEN_URI return sqlite3_open_v2(filename, ppDb, flags | SQLITE_OPEN_URI, zVfs); #else return sqlite3_open_v2(filename, ppDb, flags, zVfs); #endif } static int _sqlite3_bind_text(sqlite3_stmt *stmt, int n, char *p, int np) { return sqlite3_bind_text(stmt, n, p, np, SQLITE_TRANSIENT); } static int _sqlite3_bind_blob(sqlite3_stmt *stmt, int n, void *p, int np) { return sqlite3_bind_blob(stmt, n, p, np, SQLITE_TRANSIENT); } #include #include static int _sqlite3_exec(sqlite3* db, const char* pcmd, long long* rowid, long long* changes) { int rv = sqlite3_exec(db, pcmd, 0, 0, 0); *rowid = (long long) sqlite3_last_insert_rowid(db); *changes = (long long) sqlite3_changes(db); return rv; } #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY extern int _sqlite3_step_blocking(sqlite3_stmt *stmt); extern int _sqlite3_step_row_blocking(sqlite3_stmt* stmt, long long* rowid, long long* changes); extern int _sqlite3_prepare_v2_blocking(sqlite3 *db, const char *zSql, int nBytes, sqlite3_stmt **ppStmt, const char **pzTail); static int _sqlite3_step_internal(sqlite3_stmt *stmt) { return _sqlite3_step_blocking(stmt); } static int _sqlite3_step_row_internal(sqlite3_stmt* stmt, long long* rowid, long long* changes) { return _sqlite3_step_row_blocking(stmt, rowid, changes); } static int _sqlite3_prepare_v2_internal(sqlite3 *db, const char *zSql, int nBytes, sqlite3_stmt **ppStmt, const char **pzTail) { return _sqlite3_prepare_v2_blocking(db, zSql, nBytes, ppStmt, pzTail); } #else static int _sqlite3_step_internal(sqlite3_stmt *stmt) { return sqlite3_step(stmt); } static int _sqlite3_step_row_internal(sqlite3_stmt* stmt, long long* rowid, long long* changes) { int rv = sqlite3_step(stmt); sqlite3* db = sqlite3_db_handle(stmt); *rowid = (long long) sqlite3_last_insert_rowid(db); *changes = (long long) sqlite3_changes(db); return rv; } static int _sqlite3_prepare_v2_internal(sqlite3 *db, const char *zSql, int nBytes, sqlite3_stmt **ppStmt, const char **pzTail) { return sqlite3_prepare_v2(db, zSql, nBytes, ppStmt, pzTail); } #endif void _sqlite3_result_text(sqlite3_context* ctx, const char* s) { sqlite3_result_text(ctx, s, -1, &free); } void _sqlite3_result_blob(sqlite3_context* ctx, const void* b, int l) { sqlite3_result_blob(ctx, b, l, SQLITE_TRANSIENT); } int _sqlite3_create_function( sqlite3 *db, const char *zFunctionName, int nArg, int eTextRep, uintptr_t pApp, void (*xFunc)(sqlite3_context*,int,sqlite3_value**), void (*xStep)(sqlite3_context*,int,sqlite3_value**), void (*xFinal)(sqlite3_context*) ) { return sqlite3_create_function(db, zFunctionName, nArg, eTextRep, (void*) pApp, xFunc, xStep, xFinal); } void callbackTrampoline(sqlite3_context*, int, sqlite3_value**); void stepTrampoline(sqlite3_context*, int, sqlite3_value**); void doneTrampoline(sqlite3_context*); int compareTrampoline(void*, int, char*, int, char*); int commitHookTrampoline(void*); void rollbackHookTrampoline(void*); void updateHookTrampoline(void*, int, char*, char*, sqlite3_int64); int authorizerTrampoline(void*, int, char*, char*, char*, char*); #ifdef SQLITE_LIMIT_WORKER_THREADS # define _SQLITE_HAS_LIMIT # define SQLITE_LIMIT_LENGTH 0 # define SQLITE_LIMIT_SQL_LENGTH 1 # define SQLITE_LIMIT_COLUMN 2 # define SQLITE_LIMIT_EXPR_DEPTH 3 # define SQLITE_LIMIT_COMPOUND_SELECT 4 # define SQLITE_LIMIT_VDBE_OP 5 # define SQLITE_LIMIT_FUNCTION_ARG 6 # define SQLITE_LIMIT_ATTACHED 7 # define SQLITE_LIMIT_LIKE_PATTERN_LENGTH 8 # define SQLITE_LIMIT_VARIABLE_NUMBER 9 # define SQLITE_LIMIT_TRIGGER_DEPTH 10 # define SQLITE_LIMIT_WORKER_THREADS 11 # else # define SQLITE_LIMIT_WORKER_THREADS 11 #endif static int _sqlite3_limit(sqlite3* db, int limitId, int newLimit) { #ifndef _SQLITE_HAS_LIMIT return -1; #else return sqlite3_limit(db, limitId, newLimit); #endif } */ import "C" import ( "context" "database/sql" "database/sql/driver" "errors" "fmt" "io" "net/url" "reflect" "runtime" "strconv" "strings" "sync" "time" "unsafe" ) // SQLiteTimestampFormats is timestamp formats understood by both this module // and SQLite. The first format in the slice will be used when saving time // values into the database. When parsing a string from a timestamp or datetime // column, the formats are tried in order. var SQLiteTimestampFormats = []string{ // By default, store timestamps with whatever timezone they come with. // When parsed, they will be returned with the same timezone. "2006-01-02 15:04:05.999999999-07:00", "2006-01-02T15:04:05.999999999-07:00", "2006-01-02 15:04:05.999999999", "2006-01-02T15:04:05.999999999", "2006-01-02 15:04:05", "2006-01-02T15:04:05", "2006-01-02 15:04", "2006-01-02T15:04", "2006-01-02", } const ( columnDate string = "date" columnDatetime string = "datetime" columnTimestamp string = "timestamp" ) func init() { sql.Register("sqlite3", &SQLiteDriver{}) } // Version returns SQLite library version information. func Version() (libVersion string, libVersionNumber int, sourceID string) { libVersion = C.GoString(C.sqlite3_libversion()) libVersionNumber = int(C.sqlite3_libversion_number()) sourceID = C.GoString(C.sqlite3_sourceid()) return libVersion, libVersionNumber, sourceID } const ( // used by authorizer and pre_update_hook SQLITE_DELETE = C.SQLITE_DELETE SQLITE_INSERT = C.SQLITE_INSERT SQLITE_UPDATE = C.SQLITE_UPDATE // used by authorzier - as return value SQLITE_OK = C.SQLITE_OK SQLITE_IGNORE = C.SQLITE_IGNORE SQLITE_DENY = C.SQLITE_DENY // different actions query tries to do - passed as argument to authorizer SQLITE_CREATE_INDEX = C.SQLITE_CREATE_INDEX SQLITE_CREATE_TABLE = C.SQLITE_CREATE_TABLE SQLITE_CREATE_TEMP_INDEX = C.SQLITE_CREATE_TEMP_INDEX SQLITE_CREATE_TEMP_TABLE = C.SQLITE_CREATE_TEMP_TABLE SQLITE_CREATE_TEMP_TRIGGER = C.SQLITE_CREATE_TEMP_TRIGGER SQLITE_CREATE_TEMP_VIEW = C.SQLITE_CREATE_TEMP_VIEW SQLITE_CREATE_TRIGGER = C.SQLITE_CREATE_TRIGGER SQLITE_CREATE_VIEW = C.SQLITE_CREATE_VIEW SQLITE_CREATE_VTABLE = C.SQLITE_CREATE_VTABLE SQLITE_DROP_INDEX = C.SQLITE_DROP_INDEX SQLITE_DROP_TABLE = C.SQLITE_DROP_TABLE SQLITE_DROP_TEMP_INDEX = C.SQLITE_DROP_TEMP_INDEX SQLITE_DROP_TEMP_TABLE = C.SQLITE_DROP_TEMP_TABLE SQLITE_DROP_TEMP_TRIGGER = C.SQLITE_DROP_TEMP_TRIGGER SQLITE_DROP_TEMP_VIEW = C.SQLITE_DROP_TEMP_VIEW SQLITE_DROP_TRIGGER = C.SQLITE_DROP_TRIGGER SQLITE_DROP_VIEW = C.SQLITE_DROP_VIEW SQLITE_DROP_VTABLE = C.SQLITE_DROP_VTABLE SQLITE_PRAGMA = C.SQLITE_PRAGMA SQLITE_READ = C.SQLITE_READ SQLITE_SELECT = C.SQLITE_SELECT SQLITE_TRANSACTION = C.SQLITE_TRANSACTION SQLITE_ATTACH = C.SQLITE_ATTACH SQLITE_DETACH = C.SQLITE_DETACH SQLITE_ALTER_TABLE = C.SQLITE_ALTER_TABLE SQLITE_REINDEX = C.SQLITE_REINDEX SQLITE_ANALYZE = C.SQLITE_ANALYZE SQLITE_FUNCTION = C.SQLITE_FUNCTION SQLITE_SAVEPOINT = C.SQLITE_SAVEPOINT SQLITE_COPY = C.SQLITE_COPY /*SQLITE_RECURSIVE = C.SQLITE_RECURSIVE*/ ) // SQLiteDriver implements driver.Driver. type SQLiteDriver struct { Extensions []string ConnectHook func(*SQLiteConn) error } // SQLiteConn implements driver.Conn. type SQLiteConn struct { mu sync.Mutex db *C.sqlite3 loc *time.Location txlock string funcs []*functionInfo aggregators []*aggInfo } // SQLiteTx implements driver.Tx. type SQLiteTx struct { c *SQLiteConn } // SQLiteStmt implements driver.Stmt. type SQLiteStmt struct { mu sync.Mutex c *SQLiteConn s *C.sqlite3_stmt t string closed bool cls bool } // SQLiteResult implements sql.Result. type SQLiteResult struct { id int64 changes int64 } // SQLiteRows implements driver.Rows. type SQLiteRows struct { s *SQLiteStmt nc int cols []string decltype []string cls bool closed bool ctx context.Context // no better alternative to pass context into Next() method } type functionInfo struct { f reflect.Value argConverters []callbackArgConverter variadicConverter callbackArgConverter retConverter callbackRetConverter } func (fi *functionInfo) Call(ctx *C.sqlite3_context, argv []*C.sqlite3_value) { args, err := callbackConvertArgs(argv, fi.argConverters, fi.variadicConverter) if err != nil { callbackError(ctx, err) return } ret := fi.f.Call(args) if len(ret) == 2 && ret[1].Interface() != nil { callbackError(ctx, ret[1].Interface().(error)) return } err = fi.retConverter(ctx, ret[0]) if err != nil { callbackError(ctx, err) return } } type aggInfo struct { constructor reflect.Value // Active aggregator objects for aggregations in flight. The // aggregators are indexed by a counter stored in the aggregation // user data space provided by sqlite. active map[int64]reflect.Value next int64 stepArgConverters []callbackArgConverter stepVariadicConverter callbackArgConverter doneRetConverter callbackRetConverter } func (ai *aggInfo) agg(ctx *C.sqlite3_context) (int64, reflect.Value, error) { aggIdx := (*int64)(C.sqlite3_aggregate_context(ctx, C.int(8))) if *aggIdx == 0 { *aggIdx = ai.next ret := ai.constructor.Call(nil) if len(ret) == 2 && ret[1].Interface() != nil { return 0, reflect.Value{}, ret[1].Interface().(error) } if ret[0].IsNil() { return 0, reflect.Value{}, errors.New("aggregator constructor returned nil state") } ai.next++ ai.active[*aggIdx] = ret[0] } return *aggIdx, ai.active[*aggIdx], nil } func (ai *aggInfo) Step(ctx *C.sqlite3_context, argv []*C.sqlite3_value) { _, agg, err := ai.agg(ctx) if err != nil { callbackError(ctx, err) return } args, err := callbackConvertArgs(argv, ai.stepArgConverters, ai.stepVariadicConverter) if err != nil { callbackError(ctx, err) return } ret := agg.MethodByName("Step").Call(args) if len(ret) == 1 && ret[0].Interface() != nil { callbackError(ctx, ret[0].Interface().(error)) return } } func (ai *aggInfo) Done(ctx *C.sqlite3_context) { idx, agg, err := ai.agg(ctx) if err != nil { callbackError(ctx, err) return } defer func() { delete(ai.active, idx) }() ret := agg.MethodByName("Done").Call(nil) if len(ret) == 2 && ret[1].Interface() != nil { callbackError(ctx, ret[1].Interface().(error)) return } err = ai.doneRetConverter(ctx, ret[0]) if err != nil { callbackError(ctx, err) return } } // Commit transaction. func (tx *SQLiteTx) Commit() error { _, err := tx.c.exec(context.Background(), "COMMIT", nil) if err != nil && err.(Error).Code == C.SQLITE_BUSY { // sqlite3 will leave the transaction open in this scenario. // However, database/sql considers the transaction complete once we // return from Commit() - we must clean up to honour its semantics. tx.c.exec(context.Background(), "ROLLBACK", nil) } return err } // Rollback transaction. func (tx *SQLiteTx) Rollback() error { _, err := tx.c.exec(context.Background(), "ROLLBACK", nil) return err } // RegisterCollation makes a Go function available as a collation. // // cmp receives two UTF-8 strings, a and b. The result should be 0 if // a==b, -1 if a < b, and +1 if a > b. // // cmp must always return the same result given the same // inputs. Additionally, it must have the following properties for all // strings A, B and C: if A==B then B==A; if A==B and B==C then A==C; // if AA; if A= 1 { params, err := url.ParseQuery(dsn[pos+1:]) if err != nil { return nil, err } // Authentication if _, ok := params["_auth"]; ok { authCreate = true } if val := params.Get("_auth_user"); val != "" { authUser = val } if val := params.Get("_auth_pass"); val != "" { authPass = val } if val := params.Get("_auth_crypt"); val != "" { authCrypt = val } if val := params.Get("_auth_salt"); val != "" { authSalt = val } // _loc if val := params.Get("_loc"); val != "" { switch strings.ToLower(val) { case "auto": loc = time.Local default: loc, err = time.LoadLocation(val) if err != nil { return nil, fmt.Errorf("Invalid _loc: %v: %v", val, err) } } } // _mutex if val := params.Get("_mutex"); val != "" { switch strings.ToLower(val) { case "no": mutex = C.SQLITE_OPEN_NOMUTEX case "full": mutex = C.SQLITE_OPEN_FULLMUTEX default: return nil, fmt.Errorf("Invalid _mutex: %v", val) } } // _txlock if val := params.Get("_txlock"); val != "" { switch strings.ToLower(val) { case "immediate": txlock = "BEGIN IMMEDIATE" case "exclusive": txlock = "BEGIN EXCLUSIVE" case "deferred": txlock = "BEGIN" default: return nil, fmt.Errorf("Invalid _txlock: %v", val) } } // Auto Vacuum (_vacuum) // // https://www.sqlite.org/pragma.html#pragma_auto_vacuum // pkey = "" // Reset pkey if _, ok := params["_auto_vacuum"]; ok { pkey = "_auto_vacuum" } if _, ok := params["_vacuum"]; ok { pkey = "_vacuum" } if val := params.Get(pkey); val != "" { switch strings.ToLower(val) { case "0", "none": autoVacuum = 0 case "1", "full": autoVacuum = 1 case "2", "incremental": autoVacuum = 2 default: return nil, fmt.Errorf("Invalid _auto_vacuum: %v, expecting value of '0 NONE 1 FULL 2 INCREMENTAL'", val) } } // Busy Timeout (_busy_timeout) // // https://www.sqlite.org/pragma.html#pragma_busy_timeout // pkey = "" // Reset pkey if _, ok := params["_busy_timeout"]; ok { pkey = "_busy_timeout" } if _, ok := params["_timeout"]; ok { pkey = "_timeout" } if val := params.Get(pkey); val != "" { iv, err := strconv.ParseInt(val, 10, 64) if err != nil { return nil, fmt.Errorf("Invalid _busy_timeout: %v: %v", val, err) } busyTimeout = int(iv) } // Case Sensitive Like (_cslike) // // https://www.sqlite.org/pragma.html#pragma_case_sensitive_like // pkey = "" // Reset pkey if _, ok := params["_case_sensitive_like"]; ok { pkey = "_case_sensitive_like" } if _, ok := params["_cslike"]; ok { pkey = "_cslike" } if val := params.Get(pkey); val != "" { switch strings.ToLower(val) { case "0", "no", "false", "off": caseSensitiveLike = 0 case "1", "yes", "true", "on": caseSensitiveLike = 1 default: return nil, fmt.Errorf("Invalid _case_sensitive_like: %v, expecting boolean value of '0 1 false true no yes off on'", val) } } // Defer Foreign Keys (_defer_foreign_keys | _defer_fk) // // https://www.sqlite.org/pragma.html#pragma_defer_foreign_keys // pkey = "" // Reset pkey if _, ok := params["_defer_foreign_keys"]; ok { pkey = "_defer_foreign_keys" } if _, ok := params["_defer_fk"]; ok { pkey = "_defer_fk" } if val := params.Get(pkey); val != "" { switch strings.ToLower(val) { case "0", "no", "false", "off": deferForeignKeys = 0 case "1", "yes", "true", "on": deferForeignKeys = 1 default: return nil, fmt.Errorf("Invalid _defer_foreign_keys: %v, expecting boolean value of '0 1 false true no yes off on'", val) } } // Foreign Keys (_foreign_keys | _fk) // // https://www.sqlite.org/pragma.html#pragma_foreign_keys // pkey = "" // Reset pkey if _, ok := params["_foreign_keys"]; ok { pkey = "_foreign_keys" } if _, ok := params["_fk"]; ok { pkey = "_fk" } if val := params.Get(pkey); val != "" { switch strings.ToLower(val) { case "0", "no", "false", "off": foreignKeys = 0 case "1", "yes", "true", "on": foreignKeys = 1 default: return nil, fmt.Errorf("Invalid _foreign_keys: %v, expecting boolean value of '0 1 false true no yes off on'", val) } } // Ignore CHECK Constrains (_ignore_check_constraints) // // https://www.sqlite.org/pragma.html#pragma_ignore_check_constraints // if val := params.Get("_ignore_check_constraints"); val != "" { switch strings.ToLower(val) { case "0", "no", "false", "off": ignoreCheckConstraints = 0 case "1", "yes", "true", "on": ignoreCheckConstraints = 1 default: return nil, fmt.Errorf("Invalid _ignore_check_constraints: %v, expecting boolean value of '0 1 false true no yes off on'", val) } } // Journal Mode (_journal_mode | _journal) // // https://www.sqlite.org/pragma.html#pragma_journal_mode // pkey = "" // Reset pkey if _, ok := params["_journal_mode"]; ok { pkey = "_journal_mode" } if _, ok := params["_journal"]; ok { pkey = "_journal" } if val := params.Get(pkey); val != "" { switch strings.ToUpper(val) { case "DELETE", "TRUNCATE", "PERSIST", "MEMORY", "OFF": journalMode = strings.ToUpper(val) case "WAL": journalMode = strings.ToUpper(val) // For WAL Mode set Synchronous Mode to 'NORMAL' // See https://www.sqlite.org/pragma.html#pragma_synchronous synchronousMode = "NORMAL" default: return nil, fmt.Errorf("Invalid _journal: %v, expecting value of 'DELETE TRUNCATE PERSIST MEMORY WAL OFF'", val) } } // Locking Mode (_locking) // // https://www.sqlite.org/pragma.html#pragma_locking_mode // pkey = "" // Reset pkey if _, ok := params["_locking_mode"]; ok { pkey = "_locking_mode" } if _, ok := params["_locking"]; ok { pkey = "_locking" } if val := params.Get("_locking"); val != "" { switch strings.ToUpper(val) { case "NORMAL", "EXCLUSIVE": lockingMode = strings.ToUpper(val) default: return nil, fmt.Errorf("Invalid _locking_mode: %v, expecting value of 'NORMAL EXCLUSIVE", val) } } // Query Only (_query_only) // // https://www.sqlite.org/pragma.html#pragma_query_only // if val := params.Get("_query_only"); val != "" { switch strings.ToLower(val) { case "0", "no", "false", "off": queryOnly = 0 case "1", "yes", "true", "on": queryOnly = 1 default: return nil, fmt.Errorf("Invalid _query_only: %v, expecting boolean value of '0 1 false true no yes off on'", val) } } // Recursive Triggers (_recursive_triggers) // // https://www.sqlite.org/pragma.html#pragma_recursive_triggers // pkey = "" // Reset pkey if _, ok := params["_recursive_triggers"]; ok { pkey = "_recursive_triggers" } if _, ok := params["_rt"]; ok { pkey = "_rt" } if val := params.Get(pkey); val != "" { switch strings.ToLower(val) { case "0", "no", "false", "off": recursiveTriggers = 0 case "1", "yes", "true", "on": recursiveTriggers = 1 default: return nil, fmt.Errorf("Invalid _recursive_triggers: %v, expecting boolean value of '0 1 false true no yes off on'", val) } } // Secure Delete (_secure_delete) // // https://www.sqlite.org/pragma.html#pragma_secure_delete // if val := params.Get("_secure_delete"); val != "" { switch strings.ToLower(val) { case "0", "no", "false", "off": secureDelete = "OFF" case "1", "yes", "true", "on": secureDelete = "ON" case "fast": secureDelete = "FAST" default: return nil, fmt.Errorf("Invalid _secure_delete: %v, expecting boolean value of '0 1 false true no yes off on fast'", val) } } // Synchronous Mode (_synchronous | _sync) // // https://www.sqlite.org/pragma.html#pragma_synchronous // pkey = "" // Reset pkey if _, ok := params["_synchronous"]; ok { pkey = "_synchronous" } if _, ok := params["_sync"]; ok { pkey = "_sync" } if val := params.Get(pkey); val != "" { switch strings.ToUpper(val) { case "0", "OFF", "1", "NORMAL", "2", "FULL", "3", "EXTRA": synchronousMode = strings.ToUpper(val) default: return nil, fmt.Errorf("Invalid _synchronous: %v, expecting value of '0 OFF 1 NORMAL 2 FULL 3 EXTRA'", val) } } // Writable Schema (_writeable_schema) // // https://www.sqlite.org/pragma.html#pragma_writeable_schema // if val := params.Get("_writable_schema"); val != "" { switch strings.ToLower(val) { case "0", "no", "false", "off": writableSchema = 0 case "1", "yes", "true", "on": writableSchema = 1 default: return nil, fmt.Errorf("Invalid _writable_schema: %v, expecting boolean value of '0 1 false true no yes off on'", val) } } if !strings.HasPrefix(dsn, "file:") { dsn = dsn[:pos] } } var db *C.sqlite3 name := C.CString(dsn) defer C.free(unsafe.Pointer(name)) rv := C._sqlite3_open_v2(name, &db, mutex|C.SQLITE_OPEN_READWRITE|C.SQLITE_OPEN_CREATE, nil) if rv != 0 { if db != nil { C.sqlite3_close_v2(db) } return nil, Error{Code: ErrNo(rv)} } if db == nil { return nil, errors.New("sqlite succeeded without returning a database") } rv = C.sqlite3_busy_timeout(db, C.int(busyTimeout)) if rv != C.SQLITE_OK { C.sqlite3_close_v2(db) return nil, Error{Code: ErrNo(rv)} } exec := func(s string) error { cs := C.CString(s) rv := C.sqlite3_exec(db, cs, nil, nil, nil) C.free(unsafe.Pointer(cs)) if rv != C.SQLITE_OK { return lastError(db) } return nil } // USER AUTHENTICATION // // User Authentication is always performed even when // sqlite_userauth is not compiled in, because without user authentication // the authentication is a no-op. // // Workflow // - Authenticate // ON::SUCCESS => Continue // ON::SQLITE_AUTH => Return error and exit Open(...) // // - Activate User Authentication // Check if the user wants to activate User Authentication. // If so then first create a temporary AuthConn to the database // This is possible because we are already successfully authenticated. // // - Check if `sqlite_user`` table exists // YES => Add the provided user from DSN as Admin User and // activate user authentication. // NO => Continue // // Create connection to SQLite conn := &SQLiteConn{db: db, loc: loc, txlock: txlock} // Password Cipher has to be registered before authentication if len(authCrypt) > 0 { switch strings.ToUpper(authCrypt) { case "SHA1": if err := conn.RegisterFunc("sqlite_crypt", CryptEncoderSHA1, true); err != nil { return nil, fmt.Errorf("CryptEncoderSHA1: %s", err) } case "SSHA1": if len(authSalt) == 0 { return nil, fmt.Errorf("_auth_crypt=ssha1, requires _auth_salt") } if err := conn.RegisterFunc("sqlite_crypt", CryptEncoderSSHA1(authSalt), true); err != nil { return nil, fmt.Errorf("CryptEncoderSSHA1: %s", err) } case "SHA256": if err := conn.RegisterFunc("sqlite_crypt", CryptEncoderSHA256, true); err != nil { return nil, fmt.Errorf("CryptEncoderSHA256: %s", err) } case "SSHA256": if len(authSalt) == 0 { return nil, fmt.Errorf("_auth_crypt=ssha256, requires _auth_salt") } if err := conn.RegisterFunc("sqlite_crypt", CryptEncoderSSHA256(authSalt), true); err != nil { return nil, fmt.Errorf("CryptEncoderSSHA256: %s", err) } case "SHA384": if err := conn.RegisterFunc("sqlite_crypt", CryptEncoderSHA384, true); err != nil { return nil, fmt.Errorf("CryptEncoderSHA384: %s", err) } case "SSHA384": if len(authSalt) == 0 { return nil, fmt.Errorf("_auth_crypt=ssha384, requires _auth_salt") } if err := conn.RegisterFunc("sqlite_crypt", CryptEncoderSSHA384(authSalt), true); err != nil { return nil, fmt.Errorf("CryptEncoderSSHA384: %s", err) } case "SHA512": if err := conn.RegisterFunc("sqlite_crypt", CryptEncoderSHA512, true); err != nil { return nil, fmt.Errorf("CryptEncoderSHA512: %s", err) } case "SSHA512": if len(authSalt) == 0 { return nil, fmt.Errorf("_auth_crypt=ssha512, requires _auth_salt") } if err := conn.RegisterFunc("sqlite_crypt", CryptEncoderSSHA512(authSalt), true); err != nil { return nil, fmt.Errorf("CryptEncoderSSHA512: %s", err) } } } // Preform Authentication if err := conn.Authenticate(authUser, authPass); err != nil { return nil, err } // Register: authenticate // Authenticate will perform an authentication of the provided username // and password against the database. // // If a database contains the SQLITE_USER table, then the // call to Authenticate must be invoked with an // appropriate username and password prior to enable read and write //access to the database. // // Return SQLITE_OK on success or SQLITE_ERROR if the username/password // combination is incorrect or unknown. // // If the SQLITE_USER table is not present in the database file, then // this interface is a harmless no-op returnning SQLITE_OK. if err := conn.RegisterFunc("authenticate", conn.authenticate, true); err != nil { return nil, err } // // Register: auth_user_add // auth_user_add can be used (by an admin user only) // to create a new user. When called on a no-authentication-required // database, this routine converts the database into an authentication- // required database, automatically makes the added user an // administrator, and logs in the current connection as that user. // The AuthUserAdd only works for the "main" database, not // for any ATTACH-ed databases. Any call to AuthUserAdd by a // non-admin user results in an error. if err := conn.RegisterFunc("auth_user_add", conn.authUserAdd, true); err != nil { return nil, err } // // Register: auth_user_change // auth_user_change can be used to change a users // login credentials or admin privilege. Any user can change their own // login credentials. Only an admin user can change another users login // credentials or admin privilege setting. No user may change their own // admin privilege setting. if err := conn.RegisterFunc("auth_user_change", conn.authUserChange, true); err != nil { return nil, err } // // Register: auth_user_delete // auth_user_delete can be used (by an admin user only) // to delete a user. The currently logged-in user cannot be deleted, // which guarantees that there is always an admin user and hence that // the database cannot be converted into a no-authentication-required // database. if err := conn.RegisterFunc("auth_user_delete", conn.authUserDelete, true); err != nil { return nil, err } // Register: auth_enabled // auth_enabled can be used to check if user authentication is enabled if err := conn.RegisterFunc("auth_enabled", conn.authEnabled, true); err != nil { return nil, err } // Auto Vacuum // Moved auto_vacuum command, the user preference for auto_vacuum needs to be implemented directly after // the authentication and before the sqlite_user table gets created if the user // decides to activate User Authentication because // auto_vacuum needs to be set before any tables are created // and activating user authentication creates the internal table `sqlite_user`. if autoVacuum > -1 { if err := exec(fmt.Sprintf("PRAGMA auto_vacuum = %d;", autoVacuum)); err != nil { C.sqlite3_close_v2(db) return nil, err } } // Check if user wants to activate User Authentication if authCreate { // Before going any further, we need to check that the user // has provided an username and password within the DSN. // We are not allowed to continue. if len(authUser) == 0 { return nil, fmt.Errorf("Missing '_auth_user' while user authentication was requested with '_auth'") } if len(authPass) == 0 { return nil, fmt.Errorf("Missing '_auth_pass' while user authentication was requested with '_auth'") } // Check if User Authentication is Enabled authExists := conn.AuthEnabled() if !authExists { if err := conn.AuthUserAdd(authUser, authPass, true); err != nil { return nil, err } } } // Case Sensitive LIKE if caseSensitiveLike > -1 { if err := exec(fmt.Sprintf("PRAGMA case_sensitive_like = %d;", caseSensitiveLike)); err != nil { C.sqlite3_close_v2(db) return nil, err } } // Defer Foreign Keys if deferForeignKeys > -1 { if err := exec(fmt.Sprintf("PRAGMA defer_foreign_keys = %d;", deferForeignKeys)); err != nil { C.sqlite3_close_v2(db) return nil, err } } // Forgein Keys if foreignKeys > -1 { if err := exec(fmt.Sprintf("PRAGMA foreign_keys = %d;", foreignKeys)); err != nil { C.sqlite3_close_v2(db) return nil, err } } // Ignore CHECK Constraints if ignoreCheckConstraints > -1 { if err := exec(fmt.Sprintf("PRAGMA ignore_check_constraints = %d;", ignoreCheckConstraints)); err != nil { C.sqlite3_close_v2(db) return nil, err } } // Journal Mode // Because default Journal Mode is DELETE this PRAGMA can always be executed. if err := exec(fmt.Sprintf("PRAGMA journal_mode = %s;", journalMode)); err != nil { C.sqlite3_close_v2(db) return nil, err } // Locking Mode // Because the default is NORMAL and this is not changed in this package // by using the compile time SQLITE_DEFAULT_LOCKING_MODE this PRAGMA can always be executed if err := exec(fmt.Sprintf("PRAGMA locking_mode = %s;", lockingMode)); err != nil { C.sqlite3_close_v2(db) return nil, err } // Query Only if queryOnly > -1 { if err := exec(fmt.Sprintf("PRAGMA query_only = %d;", queryOnly)); err != nil { C.sqlite3_close_v2(db) return nil, err } } // Recursive Triggers if recursiveTriggers > -1 { if err := exec(fmt.Sprintf("PRAGMA recursive_triggers = %d;", recursiveTriggers)); err != nil { C.sqlite3_close_v2(db) return nil, err } } // Secure Delete // // Because this package can set the compile time flag SQLITE_SECURE_DELETE with a build tag // the default value for secureDelete var is 'DEFAULT' this way // you can compile with secure_delete 'ON' and disable it for a specific database connection. if secureDelete != "DEFAULT" { if err := exec(fmt.Sprintf("PRAGMA secure_delete = %s;", secureDelete)); err != nil { C.sqlite3_close_v2(db) return nil, err } } // Synchronous Mode // // Because default is NORMAL this statement is always executed if err := exec(fmt.Sprintf("PRAGMA synchronous = %s;", synchronousMode)); err != nil { C.sqlite3_close_v2(db) return nil, err } // Writable Schema if writableSchema > -1 { if err := exec(fmt.Sprintf("PRAGMA writable_schema = %d;", writableSchema)); err != nil { C.sqlite3_close_v2(db) return nil, err } } if len(d.Extensions) > 0 { if err := conn.loadExtensions(d.Extensions); err != nil { conn.Close() return nil, err } } if d.ConnectHook != nil { if err := d.ConnectHook(conn); err != nil { conn.Close() return nil, err } } runtime.SetFinalizer(conn, (*SQLiteConn).Close) return conn, nil } // Close the connection. func (c *SQLiteConn) Close() error { rv := C.sqlite3_close_v2(c.db) if rv != C.SQLITE_OK { return c.lastError() } deleteHandles(c) c.mu.Lock() c.db = nil c.mu.Unlock() runtime.SetFinalizer(c, nil) return nil } func (c *SQLiteConn) dbConnOpen() bool { if c == nil { return false } c.mu.Lock() defer c.mu.Unlock() return c.db != nil } // Prepare the query string. Return a new statement. func (c *SQLiteConn) Prepare(query string) (driver.Stmt, error) { return c.prepare(context.Background(), query) } func (c *SQLiteConn) prepare(ctx context.Context, query string) (driver.Stmt, error) { pquery := C.CString(query) defer C.free(unsafe.Pointer(pquery)) var s *C.sqlite3_stmt var tail *C.char rv := C._sqlite3_prepare_v2_internal(c.db, pquery, C.int(-1), &s, &tail) if rv != C.SQLITE_OK { return nil, c.lastError() } var t string if tail != nil && *tail != '\000' { t = strings.TrimSpace(C.GoString(tail)) } ss := &SQLiteStmt{c: c, s: s, t: t} runtime.SetFinalizer(ss, (*SQLiteStmt).Close) return ss, nil } // Run-Time Limit Categories. // See: http://www.sqlite.org/c3ref/c_limit_attached.html const ( SQLITE_LIMIT_LENGTH = C.SQLITE_LIMIT_LENGTH SQLITE_LIMIT_SQL_LENGTH = C.SQLITE_LIMIT_SQL_LENGTH SQLITE_LIMIT_COLUMN = C.SQLITE_LIMIT_COLUMN SQLITE_LIMIT_EXPR_DEPTH = C.SQLITE_LIMIT_EXPR_DEPTH SQLITE_LIMIT_COMPOUND_SELECT = C.SQLITE_LIMIT_COMPOUND_SELECT SQLITE_LIMIT_VDBE_OP = C.SQLITE_LIMIT_VDBE_OP SQLITE_LIMIT_FUNCTION_ARG = C.SQLITE_LIMIT_FUNCTION_ARG SQLITE_LIMIT_ATTACHED = C.SQLITE_LIMIT_ATTACHED SQLITE_LIMIT_LIKE_PATTERN_LENGTH = C.SQLITE_LIMIT_LIKE_PATTERN_LENGTH SQLITE_LIMIT_VARIABLE_NUMBER = C.SQLITE_LIMIT_VARIABLE_NUMBER SQLITE_LIMIT_TRIGGER_DEPTH = C.SQLITE_LIMIT_TRIGGER_DEPTH SQLITE_LIMIT_WORKER_THREADS = C.SQLITE_LIMIT_WORKER_THREADS ) // GetFilename returns the absolute path to the file containing // the requested schema. When passed an empty string, it will // instead use the database's default schema: "main". // See: sqlite3_db_filename, https://www.sqlite.org/c3ref/db_filename.html func (c *SQLiteConn) GetFilename(schemaName string) string { if schemaName == "" { schemaName = "main" } return C.GoString(C.sqlite3_db_filename(c.db, C.CString(schemaName))) } // GetLimit returns the current value of a run-time limit. // See: sqlite3_limit, http://www.sqlite.org/c3ref/limit.html func (c *SQLiteConn) GetLimit(id int) int { return int(C._sqlite3_limit(c.db, C.int(id), C.int(-1))) } // SetLimit changes the value of a run-time limits. // Then this method returns the prior value of the limit. // See: sqlite3_limit, http://www.sqlite.org/c3ref/limit.html func (c *SQLiteConn) SetLimit(id int, newVal int) int { return int(C._sqlite3_limit(c.db, C.int(id), C.int(newVal))) } // Close the statement. func (s *SQLiteStmt) Close() error { s.mu.Lock() defer s.mu.Unlock() if s.closed { return nil } s.closed = true if !s.c.dbConnOpen() { return errors.New("sqlite statement with already closed database connection") } rv := C.sqlite3_finalize(s.s) s.s = nil if rv != C.SQLITE_OK { return s.c.lastError() } runtime.SetFinalizer(s, nil) return nil } // NumInput return a number of parameters. func (s *SQLiteStmt) NumInput() int { return int(C.sqlite3_bind_parameter_count(s.s)) } type bindArg struct { n int v driver.Value } var placeHolder = []byte{0} func (s *SQLiteStmt) bind(args []namedValue) error { rv := C.sqlite3_reset(s.s) if rv != C.SQLITE_ROW && rv != C.SQLITE_OK && rv != C.SQLITE_DONE { return s.c.lastError() } for i, v := range args { if v.Name != "" { cname := C.CString(":" + v.Name) args[i].Ordinal = int(C.sqlite3_bind_parameter_index(s.s, cname)) C.free(unsafe.Pointer(cname)) } } for _, arg := range args { n := C.int(arg.Ordinal) switch v := arg.Value.(type) { case nil: rv = C.sqlite3_bind_null(s.s, n) case string: if len(v) == 0 { rv = C._sqlite3_bind_text(s.s, n, (*C.char)(unsafe.Pointer(&placeHolder[0])), C.int(0)) } else { b := []byte(v) rv = C._sqlite3_bind_text(s.s, n, (*C.char)(unsafe.Pointer(&b[0])), C.int(len(b))) } case int64: rv = C.sqlite3_bind_int64(s.s, n, C.sqlite3_int64(v)) case bool: if v { rv = C.sqlite3_bind_int(s.s, n, 1) } else { rv = C.sqlite3_bind_int(s.s, n, 0) } case float64: rv = C.sqlite3_bind_double(s.s, n, C.double(v)) case []byte: if v == nil { rv = C.sqlite3_bind_null(s.s, n) } else { ln := len(v) if ln == 0 { v = placeHolder } rv = C._sqlite3_bind_blob(s.s, n, unsafe.Pointer(&v[0]), C.int(ln)) } case time.Time: b := []byte(v.Format(SQLiteTimestampFormats[0])) rv = C._sqlite3_bind_text(s.s, n, (*C.char)(unsafe.Pointer(&b[0])), C.int(len(b))) } if rv != C.SQLITE_OK { return s.c.lastError() } } return nil } // Query the statement with arguments. Return records. func (s *SQLiteStmt) Query(args []driver.Value) (driver.Rows, error) { list := make([]namedValue, len(args)) for i, v := range args { list[i] = namedValue{ Ordinal: i + 1, Value: v, } } return s.query(context.Background(), list) } func (s *SQLiteStmt) query(ctx context.Context, args []namedValue) (driver.Rows, error) { if err := s.bind(args); err != nil { return nil, err } rows := &SQLiteRows{ s: s, nc: int(C.sqlite3_column_count(s.s)), cols: nil, decltype: nil, cls: s.cls, closed: false, ctx: ctx, } return rows, nil } // LastInsertId return last inserted ID. func (r *SQLiteResult) LastInsertId() (int64, error) { return r.id, nil } // RowsAffected return how many rows affected. func (r *SQLiteResult) RowsAffected() (int64, error) { return r.changes, nil } // Exec execute the statement with arguments. Return result object. func (s *SQLiteStmt) Exec(args []driver.Value) (driver.Result, error) { list := make([]namedValue, len(args)) for i, v := range args { list[i] = namedValue{ Ordinal: i + 1, Value: v, } } return s.exec(context.Background(), list) } // exec executes a query that doesn't return rows. Attempts to honor context timeout. func (s *SQLiteStmt) exec(ctx context.Context, args []namedValue) (driver.Result, error) { if ctx.Done() == nil { return s.execSync(args) } type result struct { r driver.Result err error } resultCh := make(chan result) go func() { r, err := s.execSync(args) resultCh <- result{r, err} }() select { case rv := <- resultCh: return rv.r, rv.err case <-ctx.Done(): select { case <-resultCh: // no need to interrupt default: // this is still racy and can be no-op if executed between sqlite3_* calls in execSync. C.sqlite3_interrupt(s.c.db) <-resultCh // ensure goroutine completed } return nil, ctx.Err() } } func (s *SQLiteStmt) execSync(args []namedValue) (driver.Result, error) { if err := s.bind(args); err != nil { C.sqlite3_reset(s.s) C.sqlite3_clear_bindings(s.s) return nil, err } var rowid, changes C.longlong rv := C._sqlite3_step_row_internal(s.s, &rowid, &changes) if rv != C.SQLITE_ROW && rv != C.SQLITE_OK && rv != C.SQLITE_DONE { err := s.c.lastError() C.sqlite3_reset(s.s) C.sqlite3_clear_bindings(s.s) return nil, err } return &SQLiteResult{id: int64(rowid), changes: int64(changes)}, nil } // Close the rows. func (rc *SQLiteRows) Close() error { rc.s.mu.Lock() if rc.s.closed || rc.closed { rc.s.mu.Unlock() return nil } rc.closed = true if rc.cls { rc.s.mu.Unlock() return rc.s.Close() } rv := C.sqlite3_reset(rc.s.s) if rv != C.SQLITE_OK { rc.s.mu.Unlock() return rc.s.c.lastError() } rc.s.mu.Unlock() return nil } // Columns return column names. func (rc *SQLiteRows) Columns() []string { rc.s.mu.Lock() defer rc.s.mu.Unlock() if rc.s.s != nil && rc.nc != len(rc.cols) { rc.cols = make([]string, rc.nc) for i := 0; i < rc.nc; i++ { rc.cols[i] = C.GoString(C.sqlite3_column_name(rc.s.s, C.int(i))) } } return rc.cols } func (rc *SQLiteRows) declTypes() []string { if rc.s.s != nil && rc.decltype == nil { rc.decltype = make([]string, rc.nc) for i := 0; i < rc.nc; i++ { rc.decltype[i] = strings.ToLower(C.GoString(C.sqlite3_column_decltype(rc.s.s, C.int(i)))) } } return rc.decltype } // DeclTypes return column types. func (rc *SQLiteRows) DeclTypes() []string { rc.s.mu.Lock() defer rc.s.mu.Unlock() return rc.declTypes() } // Next move cursor to next. Attempts to honor context timeout from QueryContext call. func (rc *SQLiteRows) Next(dest []driver.Value) error { rc.s.mu.Lock() defer rc.s.mu.Unlock() if rc.s.closed { return io.EOF } if rc.ctx.Done() == nil { return rc.nextSyncLocked(dest) } resultCh := make(chan error) go func() { resultCh <- rc.nextSyncLocked(dest) }() select { case err := <- resultCh: return err case <-rc.ctx.Done(): select { case <-resultCh: // no need to interrupt default: // this is still racy and can be no-op if executed between sqlite3_* calls in nextSyncLocked. C.sqlite3_interrupt(rc.s.c.db) <-resultCh // ensure goroutine completed } return rc.ctx.Err() } } // nextSyncLocked moves cursor to next; must be called with locked mutex. func (rc *SQLiteRows) nextSyncLocked(dest []driver.Value) error { rv := C._sqlite3_step_internal(rc.s.s) if rv == C.SQLITE_DONE { return io.EOF } if rv != C.SQLITE_ROW { rv = C.sqlite3_reset(rc.s.s) if rv != C.SQLITE_OK { return rc.s.c.lastError() } return nil } rc.declTypes() for i := range dest { switch C.sqlite3_column_type(rc.s.s, C.int(i)) { case C.SQLITE_INTEGER: val := int64(C.sqlite3_column_int64(rc.s.s, C.int(i))) switch rc.decltype[i] { case columnTimestamp, columnDatetime, columnDate: var t time.Time // Assume a millisecond unix timestamp if it's 13 digits -- too // large to be a reasonable timestamp in seconds. if val > 1e12 || val < -1e12 { val *= int64(time.Millisecond) // convert ms to nsec t = time.Unix(0, val) } else { t = time.Unix(val, 0) } t = t.UTC() if rc.s.c.loc != nil { t = t.In(rc.s.c.loc) } dest[i] = t case "boolean": dest[i] = val > 0 default: dest[i] = val } case C.SQLITE_FLOAT: dest[i] = float64(C.sqlite3_column_double(rc.s.s, C.int(i))) case C.SQLITE_BLOB: p := C.sqlite3_column_blob(rc.s.s, C.int(i)) if p == nil { dest[i] = []byte{} continue } n := C.sqlite3_column_bytes(rc.s.s, C.int(i)) dest[i] = C.GoBytes(p, n) case C.SQLITE_NULL: dest[i] = nil case C.SQLITE_TEXT: var err error var timeVal time.Time n := int(C.sqlite3_column_bytes(rc.s.s, C.int(i))) s := C.GoStringN((*C.char)(unsafe.Pointer(C.sqlite3_column_text(rc.s.s, C.int(i)))), C.int(n)) switch rc.decltype[i] { case columnTimestamp, columnDatetime, columnDate: var t time.Time s = strings.TrimSuffix(s, "Z") for _, format := range SQLiteTimestampFormats { if timeVal, err = time.ParseInLocation(format, s, time.UTC); err == nil { t = timeVal break } } if err != nil { // The column is a time value, so return the zero time on parse failure. t = time.Time{} } if rc.s.c.loc != nil { t = t.In(rc.s.c.loc) } dest[i] = t default: dest[i] = s } } } return nil }