// Copyright 2013 Julien Schmidt. All rights reserved. // Use of this source code is governed by a BSD-style license that can be found // at https://github.com/julienschmidt/httprouter/blob/master/LICENSE package gin import ( "bytes" "net/url" "strings" "unicode" "unicode/utf8" "github.com/gin-gonic/gin/internal/bytesconv" ) var ( strColon = []byte(":") strStar = []byte("*") strSlash = []byte("/") ) // Param is a single URL parameter, consisting of a key and a value. type Param struct { Key string Value string } // Params is a Param-slice, as returned by the router. // The slice is ordered, the first URL parameter is also the first slice value. // It is therefore safe to read values by the index. type Params []Param // Get returns the value of the first Param which key matches the given name and a boolean true. // If no matching Param is found, an empty string is returned and a boolean false . func (ps Params) Get(name string) (string, bool) { for _, entry := range ps { if entry.Key == name { return entry.Value, true } } return "", false } // ByName returns the value of the first Param which key matches the given name. // If no matching Param is found, an empty string is returned. func (ps Params) ByName(name string) (va string) { va, _ = ps.Get(name) return } type methodTree struct { method string root *node } type methodTrees []methodTree func (trees methodTrees) get(method string) *node { for _, tree := range trees { if tree.method == method { return tree.root } } return nil } func min(a, b int) int { if a <= b { return a } return b } func longestCommonPrefix(a, b string) int { i := 0 max := min(len(a), len(b)) for i < max && a[i] == b[i] { i++ } return i } // addChild will add a child node, keeping wildcards at the end func (n *node) addChild(child *node) { if n.wildChild && len(n.children) > 0 { wildcardChild := n.children[len(n.children)-1] n.children = append(n.children[:len(n.children)-1], child, wildcardChild) } else { n.children = append(n.children, child) } } func countParams(path string) uint16 { var n uint16 s := bytesconv.StringToBytes(path) n += uint16(bytes.Count(s, strColon)) n += uint16(bytes.Count(s, strStar)) return n } func countSections(path string) uint16 { s := bytesconv.StringToBytes(path) return uint16(bytes.Count(s, strSlash)) } type nodeType uint8 const ( root nodeType = iota + 1 param catchAll ) type node struct { path string indices string wildChild bool nType nodeType priority uint32 children []*node // child nodes, at most 1 :param style node at the end of the array handlers HandlersChain fullPath string } // Increments priority of the given child and reorders if necessary func (n *node) incrementChildPrio(pos int) int { cs := n.children cs[pos].priority++ prio := cs[pos].priority // Adjust position (move to front) newPos := pos for ; newPos > 0 && cs[newPos-1].priority < prio; newPos-- { // Swap node positions cs[newPos-1], cs[newPos] = cs[newPos], cs[newPos-1] } // Build new index char string if newPos != pos { n.indices = n.indices[:newPos] + // Unchanged prefix, might be empty n.indices[pos:pos+1] + // The index char we move n.indices[newPos:pos] + n.indices[pos+1:] // Rest without char at 'pos' } return newPos } // addRoute adds a node with the given handle to the path. // Not concurrency-safe! func (n *node) addRoute(path string, handlers HandlersChain) { fullPath := path n.priority++ // Empty tree if len(n.path) == 0 && len(n.children) == 0 { n.insertChild(path, fullPath, handlers) n.nType = root return } parentFullPathIndex := 0 walk: for { // Find the longest common prefix. // This also implies that the common prefix contains no ':' or '*' // since the existing key can't contain those chars. i := longestCommonPrefix(path, n.path) // Split edge if i < len(n.path) { child := node{ path: n.path[i:], wildChild: n.wildChild, indices: n.indices, children: n.children, handlers: n.handlers, priority: n.priority - 1, fullPath: n.fullPath, } n.children = []*node{&child} // []byte for proper unicode char conversion, see #65 n.indices = bytesconv.BytesToString([]byte{n.path[i]}) n.path = path[:i] n.handlers = nil n.wildChild = false n.fullPath = fullPath[:parentFullPathIndex+i] } // Make new node a child of this node if i < len(path) { path = path[i:] c := path[0] // '/' after param if n.nType == param && c == '/' && len(n.children) == 1 { parentFullPathIndex += len(n.path) n = n.children[0] n.priority++ continue walk } // Check if a child with the next path byte exists for i, max := 0, len(n.indices); i < max; i++ { if c == n.indices[i] { parentFullPathIndex += len(n.path) i = n.incrementChildPrio(i) n = n.children[i] continue walk } } // Otherwise insert it if c != ':' && c != '*' && n.nType != catchAll { // []byte for proper unicode char conversion, see #65 n.indices += bytesconv.BytesToString([]byte{c}) child := &node{ fullPath: fullPath, } n.addChild(child) n.incrementChildPrio(len(n.indices) - 1) n = child } else if n.wildChild { // inserting a wildcard node, need to check if it conflicts with the existing wildcard n = n.children[len(n.children)-1] n.priority++ // Check if the wildcard matches if len(path) >= len(n.path) && n.path == path[:len(n.path)] && // Adding a child to a catchAll is not possible n.nType != catchAll && // Check for longer wildcard, e.g. :name and :names (len(n.path) >= len(path) || path[len(n.path)] == '/') { continue walk } // Wildcard conflict pathSeg := path if n.nType != catchAll { pathSeg = strings.SplitN(pathSeg, "/", 2)[0] } prefix := fullPath[:strings.Index(fullPath, pathSeg)] + n.path panic("'" + pathSeg + "' in new path '" + fullPath + "' conflicts with existing wildcard '" + n.path + "' in existing prefix '" + prefix + "'") } n.insertChild(path, fullPath, handlers) return } // Otherwise add handle to current node if n.handlers != nil { panic("handlers are already registered for path '" + fullPath + "'") } n.handlers = handlers n.fullPath = fullPath return } } // Search for a wildcard segment and check the name for invalid characters. // Returns -1 as index, if no wildcard was found. func findWildcard(path string) (wildcard string, i int, valid bool) { // Find start for start, c := range []byte(path) { // A wildcard starts with ':' (param) or '*' (catch-all) if c != ':' && c != '*' { continue } // Find end and check for invalid characters valid = true for end, c := range []byte(path[start+1:]) { switch c { case '/': return path[start : start+1+end], start, valid case ':', '*': valid = false } } return path[start:], start, valid } return "", -1, false } func (n *node) insertChild(path string, fullPath string, handlers HandlersChain) { for { // Find prefix until first wildcard wildcard, i, valid := findWildcard(path) if i < 0 { // No wildcard found break } // The wildcard name must not contain ':' and '*' if !valid { panic("only one wildcard per path segment is allowed, has: '" + wildcard + "' in path '" + fullPath + "'") } // check if the wildcard has a name if len(wildcard) < 2 { panic("wildcards must be named with a non-empty name in path '" + fullPath + "'") } if wildcard[0] == ':' { // param if i > 0 { // Insert prefix before the current wildcard n.path = path[:i] path = path[i:] } child := &node{ nType: param, path: wildcard, fullPath: fullPath, } n.addChild(child) n.wildChild = true n = child n.priority++ // if the path doesn't end with the wildcard, then there // will be another non-wildcard subpath starting with '/' if len(wildcard) < len(path) { path = path[len(wildcard):] child := &node{ priority: 1, fullPath: fullPath, } n.addChild(child) n = child continue } // Otherwise we're done. Insert the handle in the new leaf n.handlers = handlers return } // catchAll if i+len(wildcard) != len(path) { panic("catch-all routes are only allowed at the end of the path in path '" + fullPath + "'") } if len(n.path) > 0 && n.path[len(n.path)-1] == '/' { panic("catch-all conflicts with existing handle for the path segment root in path '" + fullPath + "'") } // currently fixed width 1 for '/' i-- if path[i] != '/' { panic("no / before catch-all in path '" + fullPath + "'") } n.path = path[:i] // First node: catchAll node with empty path child := &node{ wildChild: true, nType: catchAll, fullPath: fullPath, } n.addChild(child) n.indices = string('/') n = child n.priority++ // second node: node holding the variable child = &node{ path: path[i:], nType: catchAll, handlers: handlers, priority: 1, fullPath: fullPath, } n.children = []*node{child} return } // If no wildcard was found, simply insert the path and handle n.path = path n.handlers = handlers n.fullPath = fullPath } // nodeValue holds return values of (*Node).getValue method type nodeValue struct { handlers HandlersChain params *Params tsr bool fullPath string } type skippedNode struct { path string node *node paramsCount int16 } // Returns the handle registered with the given path (key). The values of // wildcards are saved to a map. // If no handle can be found, a TSR (trailing slash redirect) recommendation is // made if a handle exists with an extra (without the) trailing slash for the // given path. func (n *node) getValue(path string, params *Params, skippedNodes *[]skippedNode, unescape bool) (value nodeValue) { var globalParamsCount int16 walk: // Outer loop for walking the tree for { prefix := n.path if len(path) > len(prefix) { if path[:len(prefix)] == prefix { path = path[len(prefix):] // Try all the non-wildcard children first by matching the indices idxc := path[0] for i, c := range []byte(n.indices) { if c == idxc { // strings.HasPrefix(n.children[len(n.children)-1].path, ":") == n.wildChild if n.wildChild { index := len(*skippedNodes) *skippedNodes = (*skippedNodes)[:index+1] (*skippedNodes)[index] = skippedNode{ path: prefix + path, node: &node{ path: n.path, wildChild: n.wildChild, nType: n.nType, priority: n.priority, children: n.children, handlers: n.handlers, fullPath: n.fullPath, }, paramsCount: globalParamsCount, } } n = n.children[i] continue walk } } // If the path at the end of the loop is not equal to '/' and the current node has no child nodes // the current node needs to roll back to last vaild skippedNode if path != "/" && !n.wildChild { for l := len(*skippedNodes); l > 0; { skippedNode := (*skippedNodes)[l-1] *skippedNodes = (*skippedNodes)[:l-1] if strings.HasSuffix(skippedNode.path, path) { path = skippedNode.path n = skippedNode.node if value.params != nil { *value.params = (*value.params)[:skippedNode.paramsCount] } globalParamsCount = skippedNode.paramsCount continue walk } } } // If there is no wildcard pattern, recommend a redirection if !n.wildChild { // Nothing found. // We can recommend to redirect to the same URL without a // trailing slash if a leaf exists for that path. value.tsr = path == "/" && n.handlers != nil return } // Handle wildcard child, which is always at the end of the array n = n.children[len(n.children)-1] globalParamsCount++ switch n.nType { case param: // fix truncate the parameter // tree_test.go line: 204 // Find param end (either '/' or path end) end := 0 for end < len(path) && path[end] != '/' { end++ } // Save param value if params != nil && cap(*params) > 0 { if value.params == nil { value.params = params } // Expand slice within preallocated capacity i := len(*value.params) *value.params = (*value.params)[:i+1] val := path[:end] if unescape { if v, err := url.QueryUnescape(val); err == nil { val = v } } (*value.params)[i] = Param{ Key: n.path[1:], Value: val, } } // we need to go deeper! if end < len(path) { if len(n.children) > 0 { path = path[end:] n = n.children[0] continue walk } // ... but we can't value.tsr = len(path) == end+1 return } if value.handlers = n.handlers; value.handlers != nil { value.fullPath = n.fullPath return } if len(n.children) == 1 { // No handle found. Check if a handle for this path + a // trailing slash exists for TSR recommendation n = n.children[0] value.tsr = n.path == "/" && n.handlers != nil } return case catchAll: // Save param value if params != nil { if value.params == nil { value.params = params } // Expand slice within preallocated capacity i := len(*value.params) *value.params = (*value.params)[:i+1] val := path if unescape { if v, err := url.QueryUnescape(path); err == nil { val = v } } (*value.params)[i] = Param{ Key: n.path[2:], Value: val, } } value.handlers = n.handlers value.fullPath = n.fullPath return default: panic("invalid node type") } } } if path == prefix { // If the current path does not equal '/' and the node does not have a registered handle and the most recently matched node has a child node // the current node needs to roll back to last vaild skippedNode if n.handlers == nil && path != "/" { for l := len(*skippedNodes); l > 0; { skippedNode := (*skippedNodes)[l-1] *skippedNodes = (*skippedNodes)[:l-1] if strings.HasSuffix(skippedNode.path, path) { path = skippedNode.path n = skippedNode.node if value.params != nil { *value.params = (*value.params)[:skippedNode.paramsCount] } globalParamsCount = skippedNode.paramsCount continue walk } } // n = latestNode.children[len(latestNode.children)-1] } // We should have reached the node containing the handle. // Check if this node has a handle registered. if value.handlers = n.handlers; value.handlers != nil { value.fullPath = n.fullPath return } // If there is no handle for this route, but this route has a // wildcard child, there must be a handle for this path with an // additional trailing slash if path == "/" && n.wildChild && n.nType != root { value.tsr = true return } // No handle found. Check if a handle for this path + a // trailing slash exists for trailing slash recommendation for i, c := range []byte(n.indices) { if c == '/' { n = n.children[i] value.tsr = (len(n.path) == 1 && n.handlers != nil) || (n.nType == catchAll && n.children[0].handlers != nil) return } } return } // roll back to last vaild skippedNode if path != "/" { for l := len(*skippedNodes); l > 0; { skippedNode := (*skippedNodes)[l-1] *skippedNodes = (*skippedNodes)[:l-1] if strings.HasSuffix(skippedNode.path, path) { path = skippedNode.path n = skippedNode.node if value.params != nil { *value.params = (*value.params)[:skippedNode.paramsCount] } globalParamsCount = skippedNode.paramsCount continue walk } } } // Nothing found. We can recommend to redirect to the same URL with an // extra trailing slash if a leaf exists for that path value.tsr = path == "/" || (len(prefix) == len(path)+1 && n.handlers != nil) return } } // Makes a case-insensitive lookup of the given path and tries to find a handler. // It can optionally also fix trailing slashes. // It returns the case-corrected path and a bool indicating whether the lookup // was successful. func (n *node) findCaseInsensitivePath(path string, fixTrailingSlash bool) ([]byte, bool) { const stackBufSize = 128 // Use a static sized buffer on the stack in the common case. // If the path is too long, allocate a buffer on the heap instead. buf := make([]byte, 0, stackBufSize) if length := len(path) + 1; length > stackBufSize { buf = make([]byte, 0, length) } ciPath := n.findCaseInsensitivePathRec( path, buf, // Preallocate enough memory for new path [4]byte{}, // Empty rune buffer fixTrailingSlash, ) return ciPath, ciPath != nil } // Shift bytes in array by n bytes left func shiftNRuneBytes(rb [4]byte, n int) [4]byte { switch n { case 0: return rb case 1: return [4]byte{rb[1], rb[2], rb[3], 0} case 2: return [4]byte{rb[2], rb[3]} case 3: return [4]byte{rb[3]} default: return [4]byte{} } } // Recursive case-insensitive lookup function used by n.findCaseInsensitivePath func (n *node) findCaseInsensitivePathRec(path string, ciPath []byte, rb [4]byte, fixTrailingSlash bool) []byte { npLen := len(n.path) walk: // Outer loop for walking the tree for len(path) >= npLen && (npLen == 0 || strings.EqualFold(path[1:npLen], n.path[1:])) { // Add common prefix to result oldPath := path path = path[npLen:] ciPath = append(ciPath, n.path...) if len(path) == 0 { // We should have reached the node containing the handle. // Check if this node has a handle registered. if n.handlers != nil { return ciPath } // No handle found. // Try to fix the path by adding a trailing slash if fixTrailingSlash { for i, c := range []byte(n.indices) { if c == '/' { n = n.children[i] if (len(n.path) == 1 && n.handlers != nil) || (n.nType == catchAll && n.children[0].handlers != nil) { return append(ciPath, '/') } return nil } } } return nil } // If this node does not have a wildcard (param or catchAll) child, // we can just look up the next child node and continue to walk down // the tree if !n.wildChild { // Skip rune bytes already processed rb = shiftNRuneBytes(rb, npLen) if rb[0] != 0 { // Old rune not finished idxc := rb[0] for i, c := range []byte(n.indices) { if c == idxc { // continue with child node n = n.children[i] npLen = len(n.path) continue walk } } } else { // Process a new rune var rv rune // Find rune start. // Runes are up to 4 byte long, // -4 would definitely be another rune. var off int for max := min(npLen, 3); off < max; off++ { if i := npLen - off; utf8.RuneStart(oldPath[i]) { // read rune from cached path rv, _ = utf8.DecodeRuneInString(oldPath[i:]) break } } // Calculate lowercase bytes of current rune lo := unicode.ToLower(rv) utf8.EncodeRune(rb[:], lo) // Skip already processed bytes rb = shiftNRuneBytes(rb, off) idxc := rb[0] for i, c := range []byte(n.indices) { // Lowercase matches if c == idxc { // must use a recursive approach since both the // uppercase byte and the lowercase byte might exist // as an index if out := n.children[i].findCaseInsensitivePathRec( path, ciPath, rb, fixTrailingSlash, ); out != nil { return out } break } } // If we found no match, the same for the uppercase rune, // if it differs if up := unicode.ToUpper(rv); up != lo { utf8.EncodeRune(rb[:], up) rb = shiftNRuneBytes(rb, off) idxc := rb[0] for i, c := range []byte(n.indices) { // Uppercase matches if c == idxc { // Continue with child node n = n.children[i] npLen = len(n.path) continue walk } } } } // Nothing found. We can recommend to redirect to the same URL // without a trailing slash if a leaf exists for that path if fixTrailingSlash && path == "/" && n.handlers != nil { return ciPath } return nil } n = n.children[0] switch n.nType { case param: // Find param end (either '/' or path end) end := 0 for end < len(path) && path[end] != '/' { end++ } // Add param value to case insensitive path ciPath = append(ciPath, path[:end]...) // We need to go deeper! if end < len(path) { if len(n.children) > 0 { // Continue with child node n = n.children[0] npLen = len(n.path) path = path[end:] continue } // ... but we can't if fixTrailingSlash && len(path) == end+1 { return ciPath } return nil } if n.handlers != nil { return ciPath } if fixTrailingSlash && len(n.children) == 1 { // No handle found. Check if a handle for this path + a // trailing slash exists n = n.children[0] if n.path == "/" && n.handlers != nil { return append(ciPath, '/') } } return nil case catchAll: return append(ciPath, path...) default: panic("invalid node type") } } // Nothing found. // Try to fix the path by adding / removing a trailing slash if fixTrailingSlash { if path == "/" { return ciPath } if len(path)+1 == npLen && n.path[len(path)] == '/' && strings.EqualFold(path[1:], n.path[1:len(path)]) && n.handlers != nil { return append(ciPath, n.path...) } } return nil }