enumer/stringer.go

649 lines
20 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Enumer is a tool to generate Go code that adds useful methods to Go enums (constants with a specific type).
// It started as a fork of Rob Pikes Stringer tool
//
// Please visit http://github.com/alvaroloes/enumer for a comprehensive documentation
package main
import (
"bytes"
"flag"
"fmt"
"go/ast"
"go/build"
exact "go/constant"
"go/format"
"go/importer"
"go/parser"
"go/token"
"go/types"
"io/ioutil"
"log"
"os"
"path/filepath"
"sort"
"strings"
"github.com/pascaldekloe/name"
)
var (
typeNames = flag.String("type", "", "comma-separated list of type names; must be set")
sql = flag.Bool("sql", false, "if true, the Scanner and Valuer interface will be implemented.")
json = flag.Bool("json", false, "if true, json marshaling methods will be generated. Default: false")
yaml = flag.Bool("yaml", false, "if true, yaml marshaling methods will be generated. Default: false")
text = flag.Bool("text", false, "if true, text marshaling methods will be generated. Default: false")
output = flag.String("output", "", "output file name; default srcdir/<type>_string.go")
transformMethod = flag.String("transform", "noop", "enum item name transformation method. Default: noop")
trimPrefix = flag.String("trimprefix", "", "transform each item name by removing a prefix. Default: \"\"")
)
// Usage is a replacement usage function for the flags package.
func Usage() {
_, _ = fmt.Fprintf(os.Stderr, "Usage of %s:\n", os.Args[0])
_, _ = fmt.Fprintf(os.Stderr, "\tstringer [flags] -type T [directory]\n")
_, _ = fmt.Fprintf(os.Stderr, "\tstringer [flags] -type T files... # Must be a single package\n")
_, _ = fmt.Fprintf(os.Stderr, "For more information, see:\n")
_, _ = fmt.Fprintf(os.Stderr, "\thttp://godoc.org/golang.org/x/tools/cmd/stringer\n")
_, _ = fmt.Fprintf(os.Stderr, "Flags:\n")
flag.PrintDefaults()
}
func main() {
log.SetFlags(0)
log.SetPrefix("enumer: ")
flag.Usage = Usage
flag.Parse()
if len(*typeNames) == 0 {
flag.Usage()
os.Exit(2)
}
typs := strings.Split(*typeNames, ",")
// We accept either one directory or a list of files. Which do we have?
args := flag.Args()
if len(args) == 0 {
// Default: process whole package in current directory.
args = []string{"."}
}
// Parse the package once.
var (
dir string
g Generator
)
if len(args) == 1 && isDirectory(args[0]) {
dir = args[0]
g.parsePackageDir(args[0])
} else {
dir = filepath.Dir(args[0])
g.parsePackageFiles(args)
}
// Print the header and package clause.
g.Printf("// Code generated by \"enumer %s\"; DO NOT EDIT.\n", strings.Join(os.Args[1:], " "))
g.Printf("\n")
g.Printf("package %s", g.pkg.name)
g.Printf("\n")
g.Printf("import (\n")
g.Printf("\t\"fmt\"\n")
if *sql {
g.Printf("\t\"database/sql/driver\"\n")
}
if *json {
g.Printf("\t\"encoding/json\"\n")
}
g.Printf(")\n")
// Run generate for each type.
for _, typeName := range typs {
g.generate(typeName, *json, *yaml, *sql, *text, *transformMethod, *trimPrefix)
}
// Format the output.
src := g.format()
// Write to file.
outputName := *output
if outputName == "" {
baseName := fmt.Sprintf("%s_enumer.go", typs[0])
outputName = filepath.Join(dir, strings.ToLower(baseName))
}
err := ioutil.WriteFile(outputName, src, 0644)
if err != nil {
log.Fatalf("writing output: %s", err)
}
}
// isDirectory reports whether the named file is a directory.
func isDirectory(name string) bool {
info, err := os.Stat(name)
if err != nil {
log.Fatal(err)
}
return info.IsDir()
}
// Generator holds the state of the analysis. Primarily used to buffer
// the output for format.Source.
type Generator struct {
buf bytes.Buffer // Accumulated output.
pkg *Package // Package we are scanning.
}
// Printf prints the string to the output
func (g *Generator) Printf(format string, args ...interface{}) {
_, _ = fmt.Fprintf(&g.buf, format, args...)
}
// File holds a single parsed file and associated data.
type File struct {
pkg *Package // Package to which this file belongs.
file *ast.File // Parsed AST.
// These fields are reset for each type being generated.
typeName string // Name of the constant type.
values []Value // Accumulator for constant values of that type.
}
// Package holds information about a Go package
type Package struct {
dir string
name string
defs map[*ast.Ident]types.Object
files []*File
typesPkg *types.Package
}
// parsePackageDir parses the package residing in the directory.
func (g *Generator) parsePackageDir(directory string) {
pkg, err := build.Default.ImportDir(directory, 0)
if err != nil {
log.Fatalf("cannot process directory %s: %s", directory, err)
}
var names []string
names = append(names, pkg.GoFiles...)
names = append(names, pkg.CgoFiles...)
// TODO: Need to think about constants in test files. Maybe write type_string_test.go
// in a separate pass? For later.
// names = append(names, pkg.TestGoFiles...) // These are also in the "foo" package.
names = append(names, pkg.SFiles...)
names = prefixDirectory(directory, names)
g.parsePackage(directory, names, nil)
}
// parsePackageFiles parses the package occupying the named files.
func (g *Generator) parsePackageFiles(names []string) {
g.parsePackage(".", names, nil)
}
// prefixDirectory places the directory name on the beginning of each name in the list.
func prefixDirectory(directory string, names []string) []string {
if directory == "." {
return names
}
ret := make([]string, len(names))
for i, n := range names {
ret[i] = filepath.Join(directory, n)
}
return ret
}
// parsePackage analyzes the single package constructed from the named files.
// If text is non-nil, it is a string to be used instead of the content of the file,
// to be used for testing. parsePackage exits if there is an error.
func (g *Generator) parsePackage(directory string, names []string, text interface{}) {
var files []*File
var astFiles []*ast.File
g.pkg = new(Package)
fs := token.NewFileSet()
for _, n := range names {
if !strings.HasSuffix(n, ".go") {
continue
}
parsedFile, err := parser.ParseFile(fs, n, text, 0)
if err != nil {
log.Fatalf("parsing package: %s: %s", n, err)
}
astFiles = append(astFiles, parsedFile)
files = append(files, &File{
file: parsedFile,
pkg: g.pkg,
})
}
if len(astFiles) == 0 {
log.Fatalf("%s: no buildable Go files", directory)
}
g.pkg.name = astFiles[0].Name.Name
g.pkg.files = files
g.pkg.dir = directory
// Type check the package.
g.pkg.check(fs, astFiles)
}
// check type-checks the package. The package must be OK to proceed.
func (pkg *Package) check(fs *token.FileSet, astFiles []*ast.File) {
pkg.defs = make(map[*ast.Ident]types.Object)
config := types.Config{Importer: importer.Default(), FakeImportC: true}
info := &types.Info{
Defs: pkg.defs,
}
typesPkg, err := config.Check(pkg.dir, fs, astFiles, info)
if err != nil {
log.Fatalf("checking package: %s", err)
}
pkg.typesPkg = typesPkg
}
func (g *Generator) transformValueNames(values []Value, transformMethod string) {
var sep rune
switch transformMethod {
case "snake":
sep = '_'
case "kebab":
sep = '-'
default:
return
}
for i := range values {
values[i].name = strings.ToLower(name.Delimit(values[i].name, sep))
}
}
// trimValueNames removes a prefix from each name
func (g *Generator) trimValueNames(values []Value, prefix string) {
for i := range values {
values[i].name = strings.TrimPrefix(values[i].name, prefix)
}
}
// generate produces the String method for the named type.
func (g *Generator) generate(typeName string, includeJSON, includeYAML, includeSQL, includeText bool, transformMethod string, trimPrefix string) {
values := make([]Value, 0, 100)
for _, file := range g.pkg.files {
// Set the state for this run of the walker.
file.typeName = typeName
file.values = nil
if file.file != nil {
ast.Inspect(file.file, file.genDecl)
values = append(values, file.values...)
}
}
if len(values) == 0 {
log.Fatalf("no values defined for type %s", typeName)
}
g.trimValueNames(values, trimPrefix)
g.transformValueNames(values, transformMethod)
runs := splitIntoRuns(values)
// The decision of which pattern to use depends on the number of
// runs in the numbers. If there's only one, it's easy. For more than
// one, there's a tradeoff between complexity and size of the data
// and code vs. the simplicity of a map. A map takes more space,
// but so does the code. The decision here (crossover at 10) is
// arbitrary, but considers that for large numbers of runs the cost
// of the linear scan in the switch might become important, and
// rather than use yet another algorithm such as binary search,
// we punt and use a map. In any case, the likelihood of a map
// being necessary for any realistic example other than bitmasks
// is very low. And bitmasks probably deserve their own analysis,
// to be done some other day.
const runsThreshold = 10
switch {
case len(runs) == 1:
g.buildOneRun(runs, typeName)
case len(runs) <= runsThreshold:
g.buildMultipleRuns(runs, typeName)
default:
g.buildMap(runs, typeName)
}
g.buildBasicExtras(runs, typeName, runsThreshold)
if includeJSON {
g.buildJSONMethods(runs, typeName, runsThreshold)
}
if includeText {
g.buildTextMethods(runs, typeName, runsThreshold)
}
if includeYAML {
g.buildYAMLMethods(runs, typeName, runsThreshold)
}
if includeSQL {
g.addValueAndScanMethod(typeName)
}
}
// splitIntoRuns breaks the values into runs of contiguous sequences.
// For example, given 1,2,3,5,6,7 it returns {1,2,3},{5,6,7}.
// The input slice is known to be non-empty.
func splitIntoRuns(values []Value) [][]Value {
// We use stable sort so the lexically first name is chosen for equal elements.
sort.Stable(byValue(values))
// Remove duplicates. Stable sort has put the one we want to print first,
// so use that one. The String method won't care about which named constant
// was the argument, so the first name for the given value is the only one to keep.
// We need to do this because identical values would cause the switch or map
// to fail to compile.
j := 1
for i := 1; i < len(values); i++ {
if values[i].value != values[i-1].value {
values[j] = values[i]
j++
}
}
values = values[:j]
runs := make([][]Value, 0, 10)
for len(values) > 0 {
// One contiguous sequence per outer loop.
i := 1
for i < len(values) && values[i].value == values[i-1].value+1 {
i++
}
runs = append(runs, values[:i])
values = values[i:]
}
return runs
}
// format returns the gofmt-ed contents of the Generator's buffer.
func (g *Generator) format() []byte {
src, err := format.Source(g.buf.Bytes())
if err != nil {
// Should never happen, but can arise when developing this code.
// The user can compile the output to see the error.
log.Printf("warning: internal error: invalid Go generated: %s", err)
log.Printf("warning: compile the package to analyze the error")
return g.buf.Bytes()
}
return src
}
// Value represents a declared constant.
type Value struct {
name string // The name of the constant after transformation (i.e. camel case => snake case)
// The value is stored as a bit pattern alone. The boolean tells us
// whether to interpret it as an int64 or a uint64; the only place
// this matters is when sorting.
// Much of the time the str field is all we need; it is printed
// by Value.String.
value uint64 // Will be converted to int64 when needed.
signed bool // Whether the constant is a signed type.
str string // The string representation given by the "go/exact" package.
}
func (v *Value) String() string {
return v.str
}
// byValue lets us sort the constants into increasing order.
// We take care in the Less method to sort in signed or unsigned order,
// as appropriate.
type byValue []Value
func (b byValue) Len() int { return len(b) }
func (b byValue) Swap(i, j int) { b[i], b[j] = b[j], b[i] }
func (b byValue) Less(i, j int) bool {
if b[i].signed {
return int64(b[i].value) < int64(b[j].value)
}
return b[i].value < b[j].value
}
// genDecl processes one declaration clause.
func (f *File) genDecl(node ast.Node) bool {
decl, ok := node.(*ast.GenDecl)
if !ok || decl.Tok != token.CONST {
// We only care about const declarations.
return true
}
// The name of the type of the constants we are declaring.
// Can change if this is a multi-element declaration.
typ := ""
// Loop over the elements of the declaration. Each element is a ValueSpec:
// a list of names possibly followed by a type, possibly followed by values.
// If the type and value are both missing, we carry down the type (and value,
// but the "go/types" package takes care of that).
for _, spec := range decl.Specs {
vspec := spec.(*ast.ValueSpec) // Guaranteed to succeed as this is CONST.
if vspec.Type == nil && len(vspec.Values) > 0 {
// "X = 1". With no type but a value, the constant is untyped.
// Skip this vspec and reset the remembered type.
typ = ""
continue
}
if vspec.Type != nil {
// "X T". We have a type. Remember it.
ident, ok := vspec.Type.(*ast.Ident)
if !ok {
continue
}
typ = ident.Name
}
if typ != f.typeName {
// This is not the type we're looking for.
continue
}
// We now have a list of names (from one line of source code) all being
// declared with the desired type.
// Grab their names and actual values and store them in f.values.
for _, n := range vspec.Names {
if n.Name == "_" {
continue
}
// This dance lets the type checker find the values for us. It's a
// bit tricky: look up the object declared by the n, find its
// types.Const, and extract its value.
obj, ok := f.pkg.defs[n]
if !ok {
log.Fatalf("no value for constant %s", n)
}
info := obj.Type().Underlying().(*types.Basic).Info()
if info&types.IsInteger == 0 {
log.Fatalf("can't handle non-integer constant type %s", typ)
}
value := obj.(*types.Const).Val() // Guaranteed to succeed as this is CONST.
if value.Kind() != exact.Int {
log.Fatalf("can't happen: constant is not an integer %s", n)
}
i64, isInt := exact.Int64Val(value)
u64, isUint := exact.Uint64Val(value)
if !isInt && !isUint {
log.Fatalf("internal error: value of %s is not an integer: %s", n, value.String())
}
if !isInt {
u64 = uint64(i64)
}
v := Value{
name: n.Name,
value: u64,
signed: info&types.IsUnsigned == 0,
str: value.String(),
}
f.values = append(f.values, v)
}
}
return false
}
// Helpers
// usize returns the number of bits of the smallest unsigned integer
// type that will hold n. Used to create the smallest possible slice of
// integers to use as indexes into the concatenated strings.
func usize(n int) int {
switch {
case n < 1<<8:
return 8
case n < 1<<16:
return 16
default:
// 2^32 is enough constants for anyone.
return 32
}
}
// declareIndexAndNameVars declares the index slices and concatenated names
// strings representing the runs of values.
func (g *Generator) declareIndexAndNameVars(runs [][]Value, typeName string) {
var indexes, names []string
for i, run := range runs {
index, n := g.createIndexAndNameDecl(run, typeName, fmt.Sprintf("_%d", i))
indexes = append(indexes, index)
names = append(names, n)
}
g.Printf("const (\n")
for _, n := range names {
g.Printf("\t%s\n", n)
}
g.Printf(")\n\n")
g.Printf("var (")
for _, index := range indexes {
g.Printf("\t%s\n", index)
}
g.Printf(")\n\n")
}
// declareIndexAndNameVar is the single-run version of declareIndexAndNameVars
func (g *Generator) declareIndexAndNameVar(run []Value, typeName string) {
index, n := g.createIndexAndNameDecl(run, typeName, "")
g.Printf("const %s\n", n)
g.Printf("var %s\n", index)
}
// createIndexAndNameDecl returns the pair of declarations for the run. The caller will add "const" and "var".
func (g *Generator) createIndexAndNameDecl(run []Value, typeName string, suffix string) (string, string) {
b := new(bytes.Buffer)
indexes := make([]int, len(run))
for i := range run {
b.WriteString(run[i].name)
indexes[i] = b.Len()
}
nameConst := fmt.Sprintf("_%sName%s = %q", typeName, suffix, b.String())
nameLen := b.Len()
b.Reset()
_, _ = fmt.Fprintf(b, "_%sIndex%s = [...]uint%d{0, ", typeName, suffix, usize(nameLen))
for i, v := range indexes {
if i > 0 {
_, _ = fmt.Fprintf(b, ", ")
}
_, _ = fmt.Fprintf(b, "%d", v)
}
_, _ = fmt.Fprintf(b, "}")
return b.String(), nameConst
}
// declareNameVars declares the concatenated names string representing all the values in the runs.
func (g *Generator) declareNameVars(runs [][]Value, typeName string, suffix string) {
g.Printf("const _%sName%s = \"", typeName, suffix)
for _, run := range runs {
for i := range run {
g.Printf("%s", run[i].name)
}
}
g.Printf("\"\n")
}
// buildOneRun generates the variables and String method for a single run of contiguous values.
func (g *Generator) buildOneRun(runs [][]Value, typeName string) {
values := runs[0]
g.Printf("\n")
g.declareIndexAndNameVar(values, typeName)
// The generated code is simple enough to write as a Printf format.
lessThanZero := ""
if values[0].signed {
lessThanZero = "i < 0 || "
}
if values[0].value == 0 { // Signed or unsigned, 0 is still 0.
g.Printf(stringOneRun, typeName, usize(len(values)), lessThanZero)
} else {
g.Printf(stringOneRunWithOffset, typeName, values[0].String(), usize(len(values)), lessThanZero)
}
}
// Arguments to format are:
// [1]: type name
// [2]: size of index element (8 for uint8 etc.)
// [3]: less than zero check (for signed types)
const stringOneRun = `func (i %[1]s) String() string {
if %[3]si >= %[1]s(len(_%[1]sIndex)-1) {
return fmt.Sprintf("%[1]s(%%d)", i)
}
return _%[1]sName[_%[1]sIndex[i]:_%[1]sIndex[i+1]]
}
`
// Arguments to format are:
// [1]: type name
// [2]: lowest defined value for type, as a string
// [3]: size of index element (8 for uint8 etc.)
// [4]: less than zero check (for signed types)
/*
*/
const stringOneRunWithOffset = `func (i %[1]s) String() string {
i -= %[2]s
if %[4]si >= %[1]s(len(_%[1]sIndex)-1) {
return fmt.Sprintf("%[1]s(%%d)", i + %[2]s)
}
return _%[1]sName[_%[1]sIndex[i] : _%[1]sIndex[i+1]]
}
`
// buildMultipleRuns generates the variables and String method for multiple runs of contiguous values.
// For this pattern, a single Printf format won't do.
func (g *Generator) buildMultipleRuns(runs [][]Value, typeName string) {
g.Printf("\n")
g.declareIndexAndNameVars(runs, typeName)
g.Printf("func (i %s) String() string {\n", typeName)
g.Printf("\tswitch {\n")
for i, values := range runs {
if len(values) == 1 {
g.Printf("\tcase i == %s:\n", &values[0])
g.Printf("\t\treturn _%sName_%d\n", typeName, i)
continue
}
g.Printf("\tcase %s <= i && i <= %s:\n", &values[0], &values[len(values)-1])
if values[0].value != 0 {
g.Printf("\t\ti -= %s\n", &values[0])
}
g.Printf("\t\treturn _%sName_%d[_%sIndex_%d[i]:_%sIndex_%d[i+1]]\n",
typeName, i, typeName, i, typeName, i)
}
g.Printf("\tdefault:\n")
g.Printf("\t\treturn fmt.Sprintf(\"%s(%%d)\", i)\n", typeName)
g.Printf("\t}\n")
g.Printf("}\n")
}
// buildMap handles the case where the space is so sparse a map is a reasonable fallback.
// It's a rare situation but has simple code.
func (g *Generator) buildMap(runs [][]Value, typeName string) {
g.Printf("\n")
g.declareNameVars(runs, typeName, "")
g.Printf("\nvar _%sMap = map[%s]string{\n", typeName, typeName)
n := 0
for _, values := range runs {
for _, value := range values {
g.Printf("\t%s: _%sName[%d:%d],\n", &value, typeName, n, n+len(value.name))
n += len(value.name)
}
}
g.Printf("}\n\n")
g.Printf(stringMap, typeName)
}
// Argument to format is the type name.
const stringMap = `func (i %[1]s) String() string {
if str, ok := _%[1]sMap[i]; ok {
return str
}
return fmt.Sprintf("%[1]s(%%d)", i)
}
`