mirror of https://github.com/dmarkham/enumer.git
659 lines
20 KiB
Go
659 lines
20 KiB
Go
// Copyright 2014 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Stringer is a tool to automate the creation of methods that satisfy the fmt.Stringer
|
|
// interface. Given the name of a (signed or unsigned) integer type T that has constants
|
|
// defined, stringer will create a new self-contained Go source file implementing
|
|
// func (t T) String() string
|
|
// The file is created in the same package and directory as the package that defines T.
|
|
// It has helpful defaults designed for use with go generate.
|
|
//
|
|
// Stringer works best with constants that are consecutive values such as created using iota,
|
|
// but creates good code regardless. In the future it might also provide custom support for
|
|
// constant sets that are bit patterns.
|
|
//
|
|
// For example, given this snippet,
|
|
//
|
|
// package painkiller
|
|
//
|
|
// type Pill int
|
|
//
|
|
// const (
|
|
// Placebo Pill = iota
|
|
// Aspirin
|
|
// Ibuprofen
|
|
// Paracetamol
|
|
// Acetaminophen = Paracetamol
|
|
// )
|
|
//
|
|
// running this command
|
|
//
|
|
// stringer -type=Pill
|
|
//
|
|
// in the same directory will create the file pill_string.go, in package painkiller,
|
|
// containing a definition of
|
|
//
|
|
// func (Pill) String() string
|
|
//
|
|
// That method will translate the value of a Pill constant to the string representation
|
|
// of the respective constant name, so that the call fmt.Print(painkiller.Aspirin) will
|
|
// print the string "Aspirin".
|
|
//
|
|
// Typically this process would be run using go generate, like this:
|
|
//
|
|
// //go:generate stringer -type=Pill
|
|
//
|
|
// If multiple constants have the same value, the lexically first matching name will
|
|
// be used (in the example, Acetaminophen will print as "Paracetamol").
|
|
//
|
|
// With no arguments, it processes the package in the current directory.
|
|
// Otherwise, the arguments must name a single directory holding a Go package
|
|
// or a set of Go source files that represent a single Go package.
|
|
//
|
|
// The -type flag accepts a comma-separated list of types so a single run can
|
|
// generate methods for multiple types. The default output file is t_string.go,
|
|
// where t is the lower-cased name of the first type listed. It can be overridden
|
|
// with the -output flag.
|
|
//
|
|
package main
|
|
|
|
import (
|
|
"bytes"
|
|
"flag"
|
|
"fmt"
|
|
"go/ast"
|
|
"go/build"
|
|
exact "go/constant"
|
|
"go/format"
|
|
"go/importer"
|
|
"go/parser"
|
|
"go/token"
|
|
"go/types"
|
|
"io/ioutil"
|
|
"log"
|
|
"os"
|
|
"path/filepath"
|
|
"sort"
|
|
"strings"
|
|
)
|
|
|
|
var (
|
|
typeNames = flag.String("type", "", "comma-separated list of type names; must be set")
|
|
noJSON = flag.Bool("noJSON", false, "if true, json marshaling methods will NOT be included. Default: false")
|
|
sql = flag.Bool("sql", false, "if true, the Scanner and Valuer interface will be implemented.")
|
|
output = flag.String("output", "", "output file name; default srcdir/<type>_string.go")
|
|
)
|
|
|
|
// Usage is a replacement usage function for the flags package.
|
|
func Usage() {
|
|
fmt.Fprintf(os.Stderr, "Usage of %s:\n", os.Args[0])
|
|
fmt.Fprintf(os.Stderr, "\tstringer [flags] -type T [directory]\n")
|
|
fmt.Fprintf(os.Stderr, "\tstringer [flags[ -type T files... # Must be a single package\n")
|
|
fmt.Fprintf(os.Stderr, "For more information, see:\n")
|
|
fmt.Fprintf(os.Stderr, "\thttp://godoc.org/golang.org/x/tools/cmd/stringer\n")
|
|
fmt.Fprintf(os.Stderr, "Flags:\n")
|
|
flag.PrintDefaults()
|
|
}
|
|
|
|
func main() {
|
|
log.SetFlags(0)
|
|
log.SetPrefix("enumer: ")
|
|
flag.Usage = Usage
|
|
flag.Parse()
|
|
if len(*typeNames) == 0 {
|
|
flag.Usage()
|
|
os.Exit(2)
|
|
}
|
|
types := strings.Split(*typeNames, ",")
|
|
|
|
// We accept either one directory or a list of files. Which do we have?
|
|
args := flag.Args()
|
|
if len(args) == 0 {
|
|
// Default: process whole package in current directory.
|
|
args = []string{"."}
|
|
}
|
|
|
|
// Parse the package once.
|
|
var (
|
|
dir string
|
|
g Generator
|
|
)
|
|
if len(args) == 1 && isDirectory(args[0]) {
|
|
dir = args[0]
|
|
g.parsePackageDir(args[0])
|
|
} else {
|
|
dir = filepath.Dir(args[0])
|
|
g.parsePackageFiles(args)
|
|
}
|
|
|
|
// Print the header and package clause.
|
|
g.Printf("// Code generated by \"enumer %s\"; DO NOT EDIT\n", strings.Join(os.Args[1:], " "))
|
|
g.Printf("\n")
|
|
g.Printf("package %s", g.pkg.name)
|
|
g.Printf("\n")
|
|
g.Printf("import (\n")
|
|
g.Printf("\t\"fmt\"\n")
|
|
if !*noJSON {
|
|
g.Printf("\t\"encoding/json\"\n")
|
|
}
|
|
if *sql {
|
|
g.Printf("\t\"database/sql/driver\"\n")
|
|
}
|
|
g.Printf(")\n")
|
|
|
|
// Run generate for each type.
|
|
for _, typeName := range types {
|
|
g.generate(typeName, !*noJSON)
|
|
}
|
|
|
|
// Format the output.
|
|
src := g.format()
|
|
|
|
// Write to file.
|
|
outputName := *output
|
|
if outputName == "" {
|
|
baseName := fmt.Sprintf("%s_string.go", types[0])
|
|
outputName = filepath.Join(dir, strings.ToLower(baseName))
|
|
}
|
|
err := ioutil.WriteFile(outputName, src, 0644)
|
|
if err != nil {
|
|
log.Fatalf("writing output: %s", err)
|
|
}
|
|
}
|
|
|
|
// isDirectory reports whether the named file is a directory.
|
|
func isDirectory(name string) bool {
|
|
info, err := os.Stat(name)
|
|
if err != nil {
|
|
log.Fatal(err)
|
|
}
|
|
return info.IsDir()
|
|
}
|
|
|
|
// Generator holds the state of the analysis. Primarily used to buffer
|
|
// the output for format.Source.
|
|
type Generator struct {
|
|
buf bytes.Buffer // Accumulated output.
|
|
pkg *Package // Package we are scanning.
|
|
}
|
|
|
|
func (g *Generator) Printf(format string, args ...interface{}) {
|
|
fmt.Fprintf(&g.buf, format, args...)
|
|
}
|
|
|
|
// File holds a single parsed file and associated data.
|
|
type File struct {
|
|
pkg *Package // Package to which this file belongs.
|
|
file *ast.File // Parsed AST.
|
|
// These fields are reset for each type being generated.
|
|
typeName string // Name of the constant type.
|
|
values []Value // Accumulator for constant values of that type.
|
|
}
|
|
|
|
type Package struct {
|
|
dir string
|
|
name string
|
|
defs map[*ast.Ident]types.Object
|
|
files []*File
|
|
typesPkg *types.Package
|
|
}
|
|
|
|
// parsePackageDir parses the package residing in the directory.
|
|
func (g *Generator) parsePackageDir(directory string) {
|
|
pkg, err := build.Default.ImportDir(directory, 0)
|
|
if err != nil {
|
|
log.Fatalf("cannot process directory %s: %s", directory, err)
|
|
}
|
|
var names []string
|
|
names = append(names, pkg.GoFiles...)
|
|
names = append(names, pkg.CgoFiles...)
|
|
// TODO: Need to think about constants in test files. Maybe write type_string_test.go
|
|
// in a separate pass? For later.
|
|
// names = append(names, pkg.TestGoFiles...) // These are also in the "foo" package.
|
|
names = append(names, pkg.SFiles...)
|
|
names = prefixDirectory(directory, names)
|
|
g.parsePackage(directory, names, nil)
|
|
}
|
|
|
|
// parsePackageFiles parses the package occupying the named files.
|
|
func (g *Generator) parsePackageFiles(names []string) {
|
|
g.parsePackage(".", names, nil)
|
|
}
|
|
|
|
// prefixDirectory places the directory name on the beginning of each name in the list.
|
|
func prefixDirectory(directory string, names []string) []string {
|
|
if directory == "." {
|
|
return names
|
|
}
|
|
ret := make([]string, len(names))
|
|
for i, name := range names {
|
|
ret[i] = filepath.Join(directory, name)
|
|
}
|
|
return ret
|
|
}
|
|
|
|
// parsePackage analyzes the single package constructed from the named files.
|
|
// If text is non-nil, it is a string to be used instead of the content of the file,
|
|
// to be used for testing. parsePackage exits if there is an error.
|
|
func (g *Generator) parsePackage(directory string, names []string, text interface{}) {
|
|
var files []*File
|
|
var astFiles []*ast.File
|
|
g.pkg = new(Package)
|
|
fs := token.NewFileSet()
|
|
for _, name := range names {
|
|
if !strings.HasSuffix(name, ".go") {
|
|
continue
|
|
}
|
|
parsedFile, err := parser.ParseFile(fs, name, text, 0)
|
|
if err != nil {
|
|
log.Fatalf("parsing package: %s: %s", name, err)
|
|
}
|
|
astFiles = append(astFiles, parsedFile)
|
|
files = append(files, &File{
|
|
file: parsedFile,
|
|
pkg: g.pkg,
|
|
})
|
|
}
|
|
if len(astFiles) == 0 {
|
|
log.Fatalf("%s: no buildable Go files", directory)
|
|
}
|
|
g.pkg.name = astFiles[0].Name.Name
|
|
g.pkg.files = files
|
|
g.pkg.dir = directory
|
|
// Type check the package.
|
|
g.pkg.check(fs, astFiles)
|
|
}
|
|
|
|
// check type-checks the package. The package must be OK to proceed.
|
|
func (pkg *Package) check(fs *token.FileSet, astFiles []*ast.File) {
|
|
pkg.defs = make(map[*ast.Ident]types.Object)
|
|
config := types.Config{Importer: importer.Default(), FakeImportC: true}
|
|
info := &types.Info{
|
|
Defs: pkg.defs,
|
|
}
|
|
typesPkg, err := config.Check(pkg.dir, fs, astFiles, info)
|
|
if err != nil {
|
|
log.Fatalf("checking package: %s", err)
|
|
}
|
|
pkg.typesPkg = typesPkg
|
|
}
|
|
|
|
// generate produces the String method for the named type.
|
|
func (g *Generator) generate(typeName string, includeJSON bool) {
|
|
values := make([]Value, 0, 100)
|
|
for _, file := range g.pkg.files {
|
|
// Set the state for this run of the walker.
|
|
file.typeName = typeName
|
|
file.values = nil
|
|
if file.file != nil {
|
|
ast.Inspect(file.file, file.genDecl)
|
|
values = append(values, file.values...)
|
|
}
|
|
}
|
|
|
|
if len(values) == 0 {
|
|
log.Fatalf("no values defined for type %s", typeName)
|
|
}
|
|
runs := splitIntoRuns(values)
|
|
// The decision of which pattern to use depends on the number of
|
|
// runs in the numbers. If there's only one, it's easy. For more than
|
|
// one, there's a tradeoff between complexity and size of the data
|
|
// and code vs. the simplicity of a map. A map takes more space,
|
|
// but so does the code. The decision here (crossover at 10) is
|
|
// arbitrary, but considers that for large numbers of runs the cost
|
|
// of the linear scan in the switch might become important, and
|
|
// rather than use yet another algorithm such as binary search,
|
|
// we punt and use a map. In any case, the likelihood of a map
|
|
// being necessary for any realistic example other than bitmasks
|
|
// is very low. And bitmasks probably deserve their own analysis,
|
|
// to be done some other day.
|
|
const runsThreshold = 10
|
|
switch {
|
|
case len(runs) == 1:
|
|
g.buildOneRun(runs, typeName)
|
|
case len(runs) <= runsThreshold:
|
|
g.buildMultipleRuns(runs, typeName)
|
|
default:
|
|
g.buildMap(runs, typeName)
|
|
}
|
|
|
|
// ENUMER part
|
|
g.buildValueToNameMap(runs, typeName, runsThreshold)
|
|
if includeJSON {
|
|
g.buildJSONMethods(runs, typeName, runsThreshold)
|
|
}
|
|
|
|
// SQL
|
|
if *sql {
|
|
g.addValueAndScanMethod(typeName)
|
|
}
|
|
}
|
|
|
|
// splitIntoRuns breaks the values into runs of contiguous sequences.
|
|
// For example, given 1,2,3,5,6,7 it returns {1,2,3},{5,6,7}.
|
|
// The input slice is known to be non-empty.
|
|
func splitIntoRuns(values []Value) [][]Value {
|
|
// We use stable sort so the lexically first name is chosen for equal elements.
|
|
sort.Stable(byValue(values))
|
|
// Remove duplicates. Stable sort has put the one we want to print first,
|
|
// so use that one. The String method won't care about which named constant
|
|
// was the argument, so the first name for the given value is the only one to keep.
|
|
// We need to do this because identical values would cause the switch or map
|
|
// to fail to compile.
|
|
j := 1
|
|
for i := 1; i < len(values); i++ {
|
|
if values[i].value != values[i-1].value {
|
|
values[j] = values[i]
|
|
j++
|
|
}
|
|
}
|
|
values = values[:j]
|
|
runs := make([][]Value, 0, 10)
|
|
for len(values) > 0 {
|
|
// One contiguous sequence per outer loop.
|
|
i := 1
|
|
for i < len(values) && values[i].value == values[i-1].value+1 {
|
|
i++
|
|
}
|
|
runs = append(runs, values[:i])
|
|
values = values[i:]
|
|
}
|
|
return runs
|
|
}
|
|
|
|
// format returns the gofmt-ed contents of the Generator's buffer.
|
|
func (g *Generator) format() []byte {
|
|
src, err := format.Source(g.buf.Bytes())
|
|
if err != nil {
|
|
// Should never happen, but can arise when developing this code.
|
|
// The user can compile the output to see the error.
|
|
log.Printf("warning: internal error: invalid Go generated: %s", err)
|
|
log.Printf("warning: compile the package to analyze the error")
|
|
return g.buf.Bytes()
|
|
}
|
|
return src
|
|
}
|
|
|
|
// Value represents a declared constant.
|
|
type Value struct {
|
|
name string // The name of the constant.
|
|
// The value is stored as a bit pattern alone. The boolean tells us
|
|
// whether to interpret it as an int64 or a uint64; the only place
|
|
// this matters is when sorting.
|
|
// Much of the time the str field is all we need; it is printed
|
|
// by Value.String.
|
|
value uint64 // Will be converted to int64 when needed.
|
|
signed bool // Whether the constant is a signed type.
|
|
str string // The string representation given by the "go/exact" package.
|
|
}
|
|
|
|
func (v *Value) String() string {
|
|
return v.str
|
|
}
|
|
|
|
// byValue lets us sort the constants into increasing order.
|
|
// We take care in the Less method to sort in signed or unsigned order,
|
|
// as appropriate.
|
|
type byValue []Value
|
|
|
|
func (b byValue) Len() int { return len(b) }
|
|
func (b byValue) Swap(i, j int) { b[i], b[j] = b[j], b[i] }
|
|
func (b byValue) Less(i, j int) bool {
|
|
if b[i].signed {
|
|
return int64(b[i].value) < int64(b[j].value)
|
|
}
|
|
return b[i].value < b[j].value
|
|
}
|
|
|
|
// genDecl processes one declaration clause.
|
|
func (f *File) genDecl(node ast.Node) bool {
|
|
decl, ok := node.(*ast.GenDecl)
|
|
if !ok || decl.Tok != token.CONST {
|
|
// We only care about const declarations.
|
|
return true
|
|
}
|
|
// The name of the type of the constants we are declaring.
|
|
// Can change if this is a multi-element declaration.
|
|
typ := ""
|
|
// Loop over the elements of the declaration. Each element is a ValueSpec:
|
|
// a list of names possibly followed by a type, possibly followed by values.
|
|
// If the type and value are both missing, we carry down the type (and value,
|
|
// but the "go/types" package takes care of that).
|
|
for _, spec := range decl.Specs {
|
|
vspec := spec.(*ast.ValueSpec) // Guaranteed to succeed as this is CONST.
|
|
if vspec.Type == nil && len(vspec.Values) > 0 {
|
|
// "X = 1". With no type but a value, the constant is untyped.
|
|
// Skip this vspec and reset the remembered type.
|
|
typ = ""
|
|
continue
|
|
}
|
|
if vspec.Type != nil {
|
|
// "X T". We have a type. Remember it.
|
|
ident, ok := vspec.Type.(*ast.Ident)
|
|
if !ok {
|
|
continue
|
|
}
|
|
typ = ident.Name
|
|
}
|
|
if typ != f.typeName {
|
|
// This is not the type we're looking for.
|
|
continue
|
|
}
|
|
// We now have a list of names (from one line of source code) all being
|
|
// declared with the desired type.
|
|
// Grab their names and actual values and store them in f.values.
|
|
for _, name := range vspec.Names {
|
|
if name.Name == "_" {
|
|
continue
|
|
}
|
|
// This dance lets the type checker find the values for us. It's a
|
|
// bit tricky: look up the object declared by the name, find its
|
|
// types.Const, and extract its value.
|
|
obj, ok := f.pkg.defs[name]
|
|
if !ok {
|
|
log.Fatalf("no value for constant %s", name)
|
|
}
|
|
info := obj.Type().Underlying().(*types.Basic).Info()
|
|
if info&types.IsInteger == 0 {
|
|
log.Fatalf("can't handle non-integer constant type %s", typ)
|
|
}
|
|
value := obj.(*types.Const).Val() // Guaranteed to succeed as this is CONST.
|
|
if value.Kind() != exact.Int {
|
|
log.Fatalf("can't happen: constant is not an integer %s", name)
|
|
}
|
|
i64, isInt := exact.Int64Val(value)
|
|
u64, isUint := exact.Uint64Val(value)
|
|
if !isInt && !isUint {
|
|
log.Fatalf("internal error: value of %s is not an integer: %s", name, value.String())
|
|
}
|
|
if !isInt {
|
|
u64 = uint64(i64)
|
|
}
|
|
v := Value{
|
|
name: name.Name,
|
|
value: u64,
|
|
signed: info&types.IsUnsigned == 0,
|
|
str: value.String(),
|
|
}
|
|
f.values = append(f.values, v)
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// Helpers
|
|
|
|
// usize returns the number of bits of the smallest unsigned integer
|
|
// type that will hold n. Used to create the smallest possible slice of
|
|
// integers to use as indexes into the concatenated strings.
|
|
func usize(n int) int {
|
|
switch {
|
|
case n < 1<<8:
|
|
return 8
|
|
case n < 1<<16:
|
|
return 16
|
|
default:
|
|
// 2^32 is enough constants for anyone.
|
|
return 32
|
|
}
|
|
}
|
|
|
|
// declareIndexAndNameVars declares the index slices and concatenated names
|
|
// strings representing the runs of values.
|
|
func (g *Generator) declareIndexAndNameVars(runs [][]Value, typeName string) {
|
|
var indexes, names []string
|
|
for i, run := range runs {
|
|
index, name := g.createIndexAndNameDecl(run, typeName, fmt.Sprintf("_%d", i))
|
|
indexes = append(indexes, index)
|
|
names = append(names, name)
|
|
}
|
|
g.Printf("const (\n")
|
|
for _, name := range names {
|
|
g.Printf("\t%s\n", name)
|
|
}
|
|
g.Printf(")\n\n")
|
|
g.Printf("var (")
|
|
for _, index := range indexes {
|
|
g.Printf("\t%s\n", index)
|
|
}
|
|
g.Printf(")\n\n")
|
|
}
|
|
|
|
// declareIndexAndNameVar is the single-run version of declareIndexAndNameVars
|
|
func (g *Generator) declareIndexAndNameVar(run []Value, typeName string) {
|
|
index, name := g.createIndexAndNameDecl(run, typeName, "")
|
|
g.Printf("const %s\n", name)
|
|
g.Printf("var %s\n", index)
|
|
}
|
|
|
|
// createIndexAndNameDecl returns the pair of declarations for the run. The caller will add "const" and "var".
|
|
func (g *Generator) createIndexAndNameDecl(run []Value, typeName string, suffix string) (string, string) {
|
|
b := new(bytes.Buffer)
|
|
indexes := make([]int, len(run))
|
|
for i := range run {
|
|
b.WriteString(run[i].name)
|
|
indexes[i] = b.Len()
|
|
}
|
|
nameConst := fmt.Sprintf("_%s_name%s = %q", typeName, suffix, b.String())
|
|
nameLen := b.Len()
|
|
b.Reset()
|
|
fmt.Fprintf(b, "_%s_index%s = [...]uint%d{0, ", typeName, suffix, usize(nameLen))
|
|
for i, v := range indexes {
|
|
if i > 0 {
|
|
fmt.Fprintf(b, ", ")
|
|
}
|
|
fmt.Fprintf(b, "%d", v)
|
|
}
|
|
fmt.Fprintf(b, "}")
|
|
return b.String(), nameConst
|
|
}
|
|
|
|
// declareNameVars declares the concatenated names string representing all the values in the runs.
|
|
func (g *Generator) declareNameVars(runs [][]Value, typeName string, suffix string) {
|
|
g.Printf("const _%s_name%s = \"", typeName, suffix)
|
|
for _, run := range runs {
|
|
for i := range run {
|
|
g.Printf("%s", run[i].name)
|
|
}
|
|
}
|
|
g.Printf("\"\n")
|
|
}
|
|
|
|
// buildOneRun generates the variables and String method for a single run of contiguous values.
|
|
func (g *Generator) buildOneRun(runs [][]Value, typeName string) {
|
|
values := runs[0]
|
|
g.Printf("\n")
|
|
g.declareIndexAndNameVar(values, typeName)
|
|
// The generated code is simple enough to write as a Printf format.
|
|
lessThanZero := ""
|
|
if values[0].signed {
|
|
lessThanZero = "i < 0 || "
|
|
}
|
|
if values[0].value == 0 { // Signed or unsigned, 0 is still 0.
|
|
g.Printf(stringOneRun, typeName, usize(len(values)), lessThanZero)
|
|
} else {
|
|
g.Printf(stringOneRunWithOffset, typeName, values[0].String(), usize(len(values)), lessThanZero)
|
|
}
|
|
}
|
|
|
|
// Arguments to format are:
|
|
// [1]: type name
|
|
// [2]: size of index element (8 for uint8 etc.)
|
|
// [3]: less than zero check (for signed types)
|
|
const stringOneRun = `func (i %[1]s) String() string {
|
|
if %[3]si >= %[1]s(len(_%[1]s_index)-1) {
|
|
return fmt.Sprintf("%[1]s(%%d)", i)
|
|
}
|
|
return _%[1]s_name[_%[1]s_index[i]:_%[1]s_index[i+1]]
|
|
}
|
|
`
|
|
|
|
// Arguments to format are:
|
|
// [1]: type name
|
|
// [2]: lowest defined value for type, as a string
|
|
// [3]: size of index element (8 for uint8 etc.)
|
|
// [4]: less than zero check (for signed types)
|
|
/*
|
|
*/
|
|
const stringOneRunWithOffset = `func (i %[1]s) String() string {
|
|
i -= %[2]s
|
|
if %[4]si >= %[1]s(len(_%[1]s_index)-1) {
|
|
return fmt.Sprintf("%[1]s(%%d)", i + %[2]s)
|
|
}
|
|
return _%[1]s_name[_%[1]s_index[i] : _%[1]s_index[i+1]]
|
|
}
|
|
`
|
|
|
|
// buildMultipleRuns generates the variables and String method for multiple runs of contiguous values.
|
|
// For this pattern, a single Printf format won't do.
|
|
func (g *Generator) buildMultipleRuns(runs [][]Value, typeName string) {
|
|
g.Printf("\n")
|
|
g.declareIndexAndNameVars(runs, typeName)
|
|
g.Printf("func (i %s) String() string {\n", typeName)
|
|
g.Printf("\tswitch {\n")
|
|
for i, values := range runs {
|
|
if len(values) == 1 {
|
|
g.Printf("\tcase i == %s:\n", &values[0])
|
|
g.Printf("\t\treturn _%s_name_%d\n", typeName, i)
|
|
continue
|
|
}
|
|
g.Printf("\tcase %s <= i && i <= %s:\n", &values[0], &values[len(values)-1])
|
|
if values[0].value != 0 {
|
|
g.Printf("\t\ti -= %s\n", &values[0])
|
|
}
|
|
g.Printf("\t\treturn _%s_name_%d[_%s_index_%d[i]:_%s_index_%d[i+1]]\n",
|
|
typeName, i, typeName, i, typeName, i)
|
|
}
|
|
g.Printf("\tdefault:\n")
|
|
g.Printf("\t\treturn fmt.Sprintf(\"%s(%%d)\", i)\n", typeName)
|
|
g.Printf("\t}\n")
|
|
g.Printf("}\n")
|
|
}
|
|
|
|
// buildMap handles the case where the space is so sparse a map is a reasonable fallback.
|
|
// It's a rare situation but has simple code.
|
|
func (g *Generator) buildMap(runs [][]Value, typeName string) {
|
|
g.Printf("\n")
|
|
g.declareNameVars(runs, typeName, "")
|
|
g.Printf("\nvar _%s_map = map[%s]string{\n", typeName, typeName)
|
|
n := 0
|
|
for _, values := range runs {
|
|
for _, value := range values {
|
|
g.Printf("\t%s: _%s_name[%d:%d],\n", &value, typeName, n, n+len(value.name))
|
|
n += len(value.name)
|
|
}
|
|
}
|
|
g.Printf("}\n\n")
|
|
g.Printf(stringMap, typeName)
|
|
}
|
|
|
|
// Argument to format is the type name.
|
|
const stringMap = `func (i %[1]s) String() string {
|
|
if str, ok := _%[1]s_map[i]; ok {
|
|
return str
|
|
}
|
|
return fmt.Sprintf("%[1]s(%%d)", i)
|
|
}
|
|
`
|