671 lines
23 KiB
Go
671 lines
23 KiB
Go
// Copyright 2015 The Prometheus Authors
|
||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
// you may not use this file except in compliance with the License.
|
||
// You may obtain a copy of the License at
|
||
//
|
||
// http://www.apache.org/licenses/LICENSE-2.0
|
||
//
|
||
// Unless required by applicable law or agreed to in writing, software
|
||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
// See the License for the specific language governing permissions and
|
||
// limitations under the License.
|
||
|
||
package prometheus
|
||
|
||
import (
|
||
"fmt"
|
||
"math"
|
||
"runtime"
|
||
"sort"
|
||
"sync"
|
||
"sync/atomic"
|
||
"time"
|
||
|
||
//nolint:staticcheck // Ignore SA1019. Need to keep deprecated package for compatibility.
|
||
"github.com/golang/protobuf/proto"
|
||
|
||
dto "github.com/prometheus/client_model/go"
|
||
)
|
||
|
||
// A Histogram counts individual observations from an event or sample stream in
|
||
// configurable buckets. Similar to a summary, it also provides a sum of
|
||
// observations and an observation count.
|
||
//
|
||
// On the Prometheus server, quantiles can be calculated from a Histogram using
|
||
// the histogram_quantile function in the query language.
|
||
//
|
||
// Note that Histograms, in contrast to Summaries, can be aggregated with the
|
||
// Prometheus query language (see the documentation for detailed
|
||
// procedures). However, Histograms require the user to pre-define suitable
|
||
// buckets, and they are in general less accurate. The Observe method of a
|
||
// Histogram has a very low performance overhead in comparison with the Observe
|
||
// method of a Summary.
|
||
//
|
||
// To create Histogram instances, use NewHistogram.
|
||
type Histogram interface {
|
||
Metric
|
||
Collector
|
||
|
||
// Observe adds a single observation to the histogram. Observations are
|
||
// usually positive or zero. Negative observations are accepted but
|
||
// prevent current versions of Prometheus from properly detecting
|
||
// counter resets in the sum of observations. See
|
||
// https://prometheus.io/docs/practices/histograms/#count-and-sum-of-observations
|
||
// for details.
|
||
Observe(float64)
|
||
}
|
||
|
||
// bucketLabel is used for the label that defines the upper bound of a
|
||
// bucket of a histogram ("le" -> "less or equal").
|
||
const bucketLabel = "le"
|
||
|
||
// DefBuckets are the default Histogram buckets. The default buckets are
|
||
// tailored to broadly measure the response time (in seconds) of a network
|
||
// service. Most likely, however, you will be required to define buckets
|
||
// customized to your use case.
|
||
var (
|
||
DefBuckets = []float64{.005, .01, .025, .05, .1, .25, .5, 1, 2.5, 5, 10}
|
||
|
||
errBucketLabelNotAllowed = fmt.Errorf(
|
||
"%q is not allowed as label name in histograms", bucketLabel,
|
||
)
|
||
)
|
||
|
||
// LinearBuckets creates 'count' buckets, each 'width' wide, where the lowest
|
||
// bucket has an upper bound of 'start'. The final +Inf bucket is not counted
|
||
// and not included in the returned slice. The returned slice is meant to be
|
||
// used for the Buckets field of HistogramOpts.
|
||
//
|
||
// The function panics if 'count' is zero or negative.
|
||
func LinearBuckets(start, width float64, count int) []float64 {
|
||
if count < 1 {
|
||
panic("LinearBuckets needs a positive count")
|
||
}
|
||
buckets := make([]float64, count)
|
||
for i := range buckets {
|
||
buckets[i] = start
|
||
start += width
|
||
}
|
||
return buckets
|
||
}
|
||
|
||
// ExponentialBuckets creates 'count' buckets, where the lowest bucket has an
|
||
// upper bound of 'start' and each following bucket's upper bound is 'factor'
|
||
// times the previous bucket's upper bound. The final +Inf bucket is not counted
|
||
// and not included in the returned slice. The returned slice is meant to be
|
||
// used for the Buckets field of HistogramOpts.
|
||
//
|
||
// The function panics if 'count' is 0 or negative, if 'start' is 0 or negative,
|
||
// or if 'factor' is less than or equal 1.
|
||
func ExponentialBuckets(start, factor float64, count int) []float64 {
|
||
if count < 1 {
|
||
panic("ExponentialBuckets needs a positive count")
|
||
}
|
||
if start <= 0 {
|
||
panic("ExponentialBuckets needs a positive start value")
|
||
}
|
||
if factor <= 1 {
|
||
panic("ExponentialBuckets needs a factor greater than 1")
|
||
}
|
||
buckets := make([]float64, count)
|
||
for i := range buckets {
|
||
buckets[i] = start
|
||
start *= factor
|
||
}
|
||
return buckets
|
||
}
|
||
|
||
// ExponentialBucketsRange creates 'count' buckets, where the lowest bucket is
|
||
// 'min' and the highest bucket is 'max'. The final +Inf bucket is not counted
|
||
// and not included in the returned slice. The returned slice is meant to be
|
||
// used for the Buckets field of HistogramOpts.
|
||
//
|
||
// The function panics if 'count' is 0 or negative, if 'min' is 0 or negative.
|
||
func ExponentialBucketsRange(min, max float64, count int) []float64 {
|
||
if count < 1 {
|
||
panic("ExponentialBucketsRange count needs a positive count")
|
||
}
|
||
if min <= 0 {
|
||
panic("ExponentialBucketsRange min needs to be greater than 0")
|
||
}
|
||
|
||
// Formula for exponential buckets.
|
||
// max = min*growthFactor^(bucketCount-1)
|
||
|
||
// We know max/min and highest bucket. Solve for growthFactor.
|
||
growthFactor := math.Pow(max/min, 1.0/float64(count-1))
|
||
|
||
// Now that we know growthFactor, solve for each bucket.
|
||
buckets := make([]float64, count)
|
||
for i := 1; i <= count; i++ {
|
||
buckets[i-1] = min * math.Pow(growthFactor, float64(i-1))
|
||
}
|
||
return buckets
|
||
}
|
||
|
||
// HistogramOpts bundles the options for creating a Histogram metric. It is
|
||
// mandatory to set Name to a non-empty string. All other fields are optional
|
||
// and can safely be left at their zero value, although it is strongly
|
||
// encouraged to set a Help string.
|
||
type HistogramOpts struct {
|
||
// Namespace, Subsystem, and Name are components of the fully-qualified
|
||
// name of the Histogram (created by joining these components with
|
||
// "_"). Only Name is mandatory, the others merely help structuring the
|
||
// name. Note that the fully-qualified name of the Histogram must be a
|
||
// valid Prometheus metric name.
|
||
Namespace string
|
||
Subsystem string
|
||
Name string
|
||
|
||
// Help provides information about this Histogram.
|
||
//
|
||
// Metrics with the same fully-qualified name must have the same Help
|
||
// string.
|
||
Help string
|
||
|
||
// ConstLabels are used to attach fixed labels to this metric. Metrics
|
||
// with the same fully-qualified name must have the same label names in
|
||
// their ConstLabels.
|
||
//
|
||
// ConstLabels are only used rarely. In particular, do not use them to
|
||
// attach the same labels to all your metrics. Those use cases are
|
||
// better covered by target labels set by the scraping Prometheus
|
||
// server, or by one specific metric (e.g. a build_info or a
|
||
// machine_role metric). See also
|
||
// https://prometheus.io/docs/instrumenting/writing_exporters/#target-labels-not-static-scraped-labels
|
||
ConstLabels Labels
|
||
|
||
// Buckets defines the buckets into which observations are counted. Each
|
||
// element in the slice is the upper inclusive bound of a bucket. The
|
||
// values must be sorted in strictly increasing order. There is no need
|
||
// to add a highest bucket with +Inf bound, it will be added
|
||
// implicitly. The default value is DefBuckets.
|
||
Buckets []float64
|
||
}
|
||
|
||
// NewHistogram creates a new Histogram based on the provided HistogramOpts. It
|
||
// panics if the buckets in HistogramOpts are not in strictly increasing order.
|
||
//
|
||
// The returned implementation also implements ExemplarObserver. It is safe to
|
||
// perform the corresponding type assertion. Exemplars are tracked separately
|
||
// for each bucket.
|
||
func NewHistogram(opts HistogramOpts) Histogram {
|
||
return newHistogram(
|
||
NewDesc(
|
||
BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),
|
||
opts.Help,
|
||
nil,
|
||
opts.ConstLabels,
|
||
),
|
||
opts,
|
||
)
|
||
}
|
||
|
||
func newHistogram(desc *Desc, opts HistogramOpts, labelValues ...string) Histogram {
|
||
if len(desc.variableLabels) != len(labelValues) {
|
||
panic(makeInconsistentCardinalityError(desc.fqName, desc.variableLabels, labelValues))
|
||
}
|
||
|
||
for _, n := range desc.variableLabels {
|
||
if n == bucketLabel {
|
||
panic(errBucketLabelNotAllowed)
|
||
}
|
||
}
|
||
for _, lp := range desc.constLabelPairs {
|
||
if lp.GetName() == bucketLabel {
|
||
panic(errBucketLabelNotAllowed)
|
||
}
|
||
}
|
||
|
||
if len(opts.Buckets) == 0 {
|
||
opts.Buckets = DefBuckets
|
||
}
|
||
|
||
h := &histogram{
|
||
desc: desc,
|
||
upperBounds: opts.Buckets,
|
||
labelPairs: MakeLabelPairs(desc, labelValues),
|
||
counts: [2]*histogramCounts{{}, {}},
|
||
now: time.Now,
|
||
}
|
||
for i, upperBound := range h.upperBounds {
|
||
if i < len(h.upperBounds)-1 {
|
||
if upperBound >= h.upperBounds[i+1] {
|
||
panic(fmt.Errorf(
|
||
"histogram buckets must be in increasing order: %f >= %f",
|
||
upperBound, h.upperBounds[i+1],
|
||
))
|
||
}
|
||
} else {
|
||
if math.IsInf(upperBound, +1) {
|
||
// The +Inf bucket is implicit. Remove it here.
|
||
h.upperBounds = h.upperBounds[:i]
|
||
}
|
||
}
|
||
}
|
||
// Finally we know the final length of h.upperBounds and can make buckets
|
||
// for both counts as well as exemplars:
|
||
h.counts[0].buckets = make([]uint64, len(h.upperBounds))
|
||
h.counts[1].buckets = make([]uint64, len(h.upperBounds))
|
||
h.exemplars = make([]atomic.Value, len(h.upperBounds)+1)
|
||
|
||
h.init(h) // Init self-collection.
|
||
return h
|
||
}
|
||
|
||
type histogramCounts struct {
|
||
// sumBits contains the bits of the float64 representing the sum of all
|
||
// observations. sumBits and count have to go first in the struct to
|
||
// guarantee alignment for atomic operations.
|
||
// http://golang.org/pkg/sync/atomic/#pkg-note-BUG
|
||
sumBits uint64
|
||
count uint64
|
||
buckets []uint64
|
||
}
|
||
|
||
type histogram struct {
|
||
// countAndHotIdx enables lock-free writes with use of atomic updates.
|
||
// The most significant bit is the hot index [0 or 1] of the count field
|
||
// below. Observe calls update the hot one. All remaining bits count the
|
||
// number of Observe calls. Observe starts by incrementing this counter,
|
||
// and finish by incrementing the count field in the respective
|
||
// histogramCounts, as a marker for completion.
|
||
//
|
||
// Calls of the Write method (which are non-mutating reads from the
|
||
// perspective of the histogram) swap the hot–cold under the writeMtx
|
||
// lock. A cooldown is awaited (while locked) by comparing the number of
|
||
// observations with the initiation count. Once they match, then the
|
||
// last observation on the now cool one has completed. All cool fields must
|
||
// be merged into the new hot before releasing writeMtx.
|
||
//
|
||
// Fields with atomic access first! See alignment constraint:
|
||
// http://golang.org/pkg/sync/atomic/#pkg-note-BUG
|
||
countAndHotIdx uint64
|
||
|
||
selfCollector
|
||
desc *Desc
|
||
writeMtx sync.Mutex // Only used in the Write method.
|
||
|
||
// Two counts, one is "hot" for lock-free observations, the other is
|
||
// "cold" for writing out a dto.Metric. It has to be an array of
|
||
// pointers to guarantee 64bit alignment of the histogramCounts, see
|
||
// http://golang.org/pkg/sync/atomic/#pkg-note-BUG.
|
||
counts [2]*histogramCounts
|
||
|
||
upperBounds []float64
|
||
labelPairs []*dto.LabelPair
|
||
exemplars []atomic.Value // One more than buckets (to include +Inf), each a *dto.Exemplar.
|
||
|
||
now func() time.Time // To mock out time.Now() for testing.
|
||
}
|
||
|
||
func (h *histogram) Desc() *Desc {
|
||
return h.desc
|
||
}
|
||
|
||
func (h *histogram) Observe(v float64) {
|
||
h.observe(v, h.findBucket(v))
|
||
}
|
||
|
||
func (h *histogram) ObserveWithExemplar(v float64, e Labels) {
|
||
i := h.findBucket(v)
|
||
h.observe(v, i)
|
||
h.updateExemplar(v, i, e)
|
||
}
|
||
|
||
func (h *histogram) Write(out *dto.Metric) error {
|
||
// For simplicity, we protect this whole method by a mutex. It is not in
|
||
// the hot path, i.e. Observe is called much more often than Write. The
|
||
// complication of making Write lock-free isn't worth it, if possible at
|
||
// all.
|
||
h.writeMtx.Lock()
|
||
defer h.writeMtx.Unlock()
|
||
|
||
// Adding 1<<63 switches the hot index (from 0 to 1 or from 1 to 0)
|
||
// without touching the count bits. See the struct comments for a full
|
||
// description of the algorithm.
|
||
n := atomic.AddUint64(&h.countAndHotIdx, 1<<63)
|
||
// count is contained unchanged in the lower 63 bits.
|
||
count := n & ((1 << 63) - 1)
|
||
// The most significant bit tells us which counts is hot. The complement
|
||
// is thus the cold one.
|
||
hotCounts := h.counts[n>>63]
|
||
coldCounts := h.counts[(^n)>>63]
|
||
|
||
// Await cooldown.
|
||
for count != atomic.LoadUint64(&coldCounts.count) {
|
||
runtime.Gosched() // Let observations get work done.
|
||
}
|
||
|
||
his := &dto.Histogram{
|
||
Bucket: make([]*dto.Bucket, len(h.upperBounds)),
|
||
SampleCount: proto.Uint64(count),
|
||
SampleSum: proto.Float64(math.Float64frombits(atomic.LoadUint64(&coldCounts.sumBits))),
|
||
}
|
||
var cumCount uint64
|
||
for i, upperBound := range h.upperBounds {
|
||
cumCount += atomic.LoadUint64(&coldCounts.buckets[i])
|
||
his.Bucket[i] = &dto.Bucket{
|
||
CumulativeCount: proto.Uint64(cumCount),
|
||
UpperBound: proto.Float64(upperBound),
|
||
}
|
||
if e := h.exemplars[i].Load(); e != nil {
|
||
his.Bucket[i].Exemplar = e.(*dto.Exemplar)
|
||
}
|
||
}
|
||
// If there is an exemplar for the +Inf bucket, we have to add that bucket explicitly.
|
||
if e := h.exemplars[len(h.upperBounds)].Load(); e != nil {
|
||
b := &dto.Bucket{
|
||
CumulativeCount: proto.Uint64(count),
|
||
UpperBound: proto.Float64(math.Inf(1)),
|
||
Exemplar: e.(*dto.Exemplar),
|
||
}
|
||
his.Bucket = append(his.Bucket, b)
|
||
}
|
||
|
||
out.Histogram = his
|
||
out.Label = h.labelPairs
|
||
|
||
// Finally add all the cold counts to the new hot counts and reset the cold counts.
|
||
atomic.AddUint64(&hotCounts.count, count)
|
||
atomic.StoreUint64(&coldCounts.count, 0)
|
||
for {
|
||
oldBits := atomic.LoadUint64(&hotCounts.sumBits)
|
||
newBits := math.Float64bits(math.Float64frombits(oldBits) + his.GetSampleSum())
|
||
if atomic.CompareAndSwapUint64(&hotCounts.sumBits, oldBits, newBits) {
|
||
atomic.StoreUint64(&coldCounts.sumBits, 0)
|
||
break
|
||
}
|
||
}
|
||
for i := range h.upperBounds {
|
||
atomic.AddUint64(&hotCounts.buckets[i], atomic.LoadUint64(&coldCounts.buckets[i]))
|
||
atomic.StoreUint64(&coldCounts.buckets[i], 0)
|
||
}
|
||
return nil
|
||
}
|
||
|
||
// findBucket returns the index of the bucket for the provided value, or
|
||
// len(h.upperBounds) for the +Inf bucket.
|
||
func (h *histogram) findBucket(v float64) int {
|
||
// TODO(beorn7): For small numbers of buckets (<30), a linear search is
|
||
// slightly faster than the binary search. If we really care, we could
|
||
// switch from one search strategy to the other depending on the number
|
||
// of buckets.
|
||
//
|
||
// Microbenchmarks (BenchmarkHistogramNoLabels):
|
||
// 11 buckets: 38.3 ns/op linear - binary 48.7 ns/op
|
||
// 100 buckets: 78.1 ns/op linear - binary 54.9 ns/op
|
||
// 300 buckets: 154 ns/op linear - binary 61.6 ns/op
|
||
return sort.SearchFloat64s(h.upperBounds, v)
|
||
}
|
||
|
||
// observe is the implementation for Observe without the findBucket part.
|
||
func (h *histogram) observe(v float64, bucket int) {
|
||
// We increment h.countAndHotIdx so that the counter in the lower
|
||
// 63 bits gets incremented. At the same time, we get the new value
|
||
// back, which we can use to find the currently-hot counts.
|
||
n := atomic.AddUint64(&h.countAndHotIdx, 1)
|
||
hotCounts := h.counts[n>>63]
|
||
|
||
if bucket < len(h.upperBounds) {
|
||
atomic.AddUint64(&hotCounts.buckets[bucket], 1)
|
||
}
|
||
for {
|
||
oldBits := atomic.LoadUint64(&hotCounts.sumBits)
|
||
newBits := math.Float64bits(math.Float64frombits(oldBits) + v)
|
||
if atomic.CompareAndSwapUint64(&hotCounts.sumBits, oldBits, newBits) {
|
||
break
|
||
}
|
||
}
|
||
// Increment count last as we take it as a signal that the observation
|
||
// is complete.
|
||
atomic.AddUint64(&hotCounts.count, 1)
|
||
}
|
||
|
||
// updateExemplar replaces the exemplar for the provided bucket. With empty
|
||
// labels, it's a no-op. It panics if any of the labels is invalid.
|
||
func (h *histogram) updateExemplar(v float64, bucket int, l Labels) {
|
||
if l == nil {
|
||
return
|
||
}
|
||
e, err := newExemplar(v, h.now(), l)
|
||
if err != nil {
|
||
panic(err)
|
||
}
|
||
h.exemplars[bucket].Store(e)
|
||
}
|
||
|
||
// HistogramVec is a Collector that bundles a set of Histograms that all share the
|
||
// same Desc, but have different values for their variable labels. This is used
|
||
// if you want to count the same thing partitioned by various dimensions
|
||
// (e.g. HTTP request latencies, partitioned by status code and method). Create
|
||
// instances with NewHistogramVec.
|
||
type HistogramVec struct {
|
||
*MetricVec
|
||
}
|
||
|
||
// NewHistogramVec creates a new HistogramVec based on the provided HistogramOpts and
|
||
// partitioned by the given label names.
|
||
func NewHistogramVec(opts HistogramOpts, labelNames []string) *HistogramVec {
|
||
desc := NewDesc(
|
||
BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),
|
||
opts.Help,
|
||
labelNames,
|
||
opts.ConstLabels,
|
||
)
|
||
return &HistogramVec{
|
||
MetricVec: NewMetricVec(desc, func(lvs ...string) Metric {
|
||
return newHistogram(desc, opts, lvs...)
|
||
}),
|
||
}
|
||
}
|
||
|
||
// GetMetricWithLabelValues returns the Histogram for the given slice of label
|
||
// values (same order as the variable labels in Desc). If that combination of
|
||
// label values is accessed for the first time, a new Histogram is created.
|
||
//
|
||
// It is possible to call this method without using the returned Histogram to only
|
||
// create the new Histogram but leave it at its starting value, a Histogram without
|
||
// any observations.
|
||
//
|
||
// Keeping the Histogram for later use is possible (and should be considered if
|
||
// performance is critical), but keep in mind that Reset, DeleteLabelValues and
|
||
// Delete can be used to delete the Histogram from the HistogramVec. In that case, the
|
||
// Histogram will still exist, but it will not be exported anymore, even if a
|
||
// Histogram with the same label values is created later. See also the CounterVec
|
||
// example.
|
||
//
|
||
// An error is returned if the number of label values is not the same as the
|
||
// number of variable labels in Desc (minus any curried labels).
|
||
//
|
||
// Note that for more than one label value, this method is prone to mistakes
|
||
// caused by an incorrect order of arguments. Consider GetMetricWith(Labels) as
|
||
// an alternative to avoid that type of mistake. For higher label numbers, the
|
||
// latter has a much more readable (albeit more verbose) syntax, but it comes
|
||
// with a performance overhead (for creating and processing the Labels map).
|
||
// See also the GaugeVec example.
|
||
func (v *HistogramVec) GetMetricWithLabelValues(lvs ...string) (Observer, error) {
|
||
metric, err := v.MetricVec.GetMetricWithLabelValues(lvs...)
|
||
if metric != nil {
|
||
return metric.(Observer), err
|
||
}
|
||
return nil, err
|
||
}
|
||
|
||
// GetMetricWith returns the Histogram for the given Labels map (the label names
|
||
// must match those of the variable labels in Desc). If that label map is
|
||
// accessed for the first time, a new Histogram is created. Implications of
|
||
// creating a Histogram without using it and keeping the Histogram for later use
|
||
// are the same as for GetMetricWithLabelValues.
|
||
//
|
||
// An error is returned if the number and names of the Labels are inconsistent
|
||
// with those of the variable labels in Desc (minus any curried labels).
|
||
//
|
||
// This method is used for the same purpose as
|
||
// GetMetricWithLabelValues(...string). See there for pros and cons of the two
|
||
// methods.
|
||
func (v *HistogramVec) GetMetricWith(labels Labels) (Observer, error) {
|
||
metric, err := v.MetricVec.GetMetricWith(labels)
|
||
if metric != nil {
|
||
return metric.(Observer), err
|
||
}
|
||
return nil, err
|
||
}
|
||
|
||
// WithLabelValues works as GetMetricWithLabelValues, but panics where
|
||
// GetMetricWithLabelValues would have returned an error. Not returning an
|
||
// error allows shortcuts like
|
||
// myVec.WithLabelValues("404", "GET").Observe(42.21)
|
||
func (v *HistogramVec) WithLabelValues(lvs ...string) Observer {
|
||
h, err := v.GetMetricWithLabelValues(lvs...)
|
||
if err != nil {
|
||
panic(err)
|
||
}
|
||
return h
|
||
}
|
||
|
||
// With works as GetMetricWith but panics where GetMetricWithLabels would have
|
||
// returned an error. Not returning an error allows shortcuts like
|
||
// myVec.With(prometheus.Labels{"code": "404", "method": "GET"}).Observe(42.21)
|
||
func (v *HistogramVec) With(labels Labels) Observer {
|
||
h, err := v.GetMetricWith(labels)
|
||
if err != nil {
|
||
panic(err)
|
||
}
|
||
return h
|
||
}
|
||
|
||
// CurryWith returns a vector curried with the provided labels, i.e. the
|
||
// returned vector has those labels pre-set for all labeled operations performed
|
||
// on it. The cardinality of the curried vector is reduced accordingly. The
|
||
// order of the remaining labels stays the same (just with the curried labels
|
||
// taken out of the sequence – which is relevant for the
|
||
// (GetMetric)WithLabelValues methods). It is possible to curry a curried
|
||
// vector, but only with labels not yet used for currying before.
|
||
//
|
||
// The metrics contained in the HistogramVec are shared between the curried and
|
||
// uncurried vectors. They are just accessed differently. Curried and uncurried
|
||
// vectors behave identically in terms of collection. Only one must be
|
||
// registered with a given registry (usually the uncurried version). The Reset
|
||
// method deletes all metrics, even if called on a curried vector.
|
||
func (v *HistogramVec) CurryWith(labels Labels) (ObserverVec, error) {
|
||
vec, err := v.MetricVec.CurryWith(labels)
|
||
if vec != nil {
|
||
return &HistogramVec{vec}, err
|
||
}
|
||
return nil, err
|
||
}
|
||
|
||
// MustCurryWith works as CurryWith but panics where CurryWith would have
|
||
// returned an error.
|
||
func (v *HistogramVec) MustCurryWith(labels Labels) ObserverVec {
|
||
vec, err := v.CurryWith(labels)
|
||
if err != nil {
|
||
panic(err)
|
||
}
|
||
return vec
|
||
}
|
||
|
||
type constHistogram struct {
|
||
desc *Desc
|
||
count uint64
|
||
sum float64
|
||
buckets map[float64]uint64
|
||
labelPairs []*dto.LabelPair
|
||
}
|
||
|
||
func (h *constHistogram) Desc() *Desc {
|
||
return h.desc
|
||
}
|
||
|
||
func (h *constHistogram) Write(out *dto.Metric) error {
|
||
his := &dto.Histogram{}
|
||
buckets := make([]*dto.Bucket, 0, len(h.buckets))
|
||
|
||
his.SampleCount = proto.Uint64(h.count)
|
||
his.SampleSum = proto.Float64(h.sum)
|
||
|
||
for upperBound, count := range h.buckets {
|
||
buckets = append(buckets, &dto.Bucket{
|
||
CumulativeCount: proto.Uint64(count),
|
||
UpperBound: proto.Float64(upperBound),
|
||
})
|
||
}
|
||
|
||
if len(buckets) > 0 {
|
||
sort.Sort(buckSort(buckets))
|
||
}
|
||
his.Bucket = buckets
|
||
|
||
out.Histogram = his
|
||
out.Label = h.labelPairs
|
||
|
||
return nil
|
||
}
|
||
|
||
// NewConstHistogram returns a metric representing a Prometheus histogram with
|
||
// fixed values for the count, sum, and bucket counts. As those parameters
|
||
// cannot be changed, the returned value does not implement the Histogram
|
||
// interface (but only the Metric interface). Users of this package will not
|
||
// have much use for it in regular operations. However, when implementing custom
|
||
// Collectors, it is useful as a throw-away metric that is generated on the fly
|
||
// to send it to Prometheus in the Collect method.
|
||
//
|
||
// buckets is a map of upper bounds to cumulative counts, excluding the +Inf
|
||
// bucket.
|
||
//
|
||
// NewConstHistogram returns an error if the length of labelValues is not
|
||
// consistent with the variable labels in Desc or if Desc is invalid.
|
||
func NewConstHistogram(
|
||
desc *Desc,
|
||
count uint64,
|
||
sum float64,
|
||
buckets map[float64]uint64,
|
||
labelValues ...string,
|
||
) (Metric, error) {
|
||
if desc.err != nil {
|
||
return nil, desc.err
|
||
}
|
||
if err := validateLabelValues(labelValues, len(desc.variableLabels)); err != nil {
|
||
return nil, err
|
||
}
|
||
return &constHistogram{
|
||
desc: desc,
|
||
count: count,
|
||
sum: sum,
|
||
buckets: buckets,
|
||
labelPairs: MakeLabelPairs(desc, labelValues),
|
||
}, nil
|
||
}
|
||
|
||
// MustNewConstHistogram is a version of NewConstHistogram that panics where
|
||
// NewConstHistogram would have returned an error.
|
||
func MustNewConstHistogram(
|
||
desc *Desc,
|
||
count uint64,
|
||
sum float64,
|
||
buckets map[float64]uint64,
|
||
labelValues ...string,
|
||
) Metric {
|
||
m, err := NewConstHistogram(desc, count, sum, buckets, labelValues...)
|
||
if err != nil {
|
||
panic(err)
|
||
}
|
||
return m
|
||
}
|
||
|
||
type buckSort []*dto.Bucket
|
||
|
||
func (s buckSort) Len() int {
|
||
return len(s)
|
||
}
|
||
|
||
func (s buckSort) Swap(i, j int) {
|
||
s[i], s[j] = s[j], s[i]
|
||
}
|
||
|
||
func (s buckSort) Less(i, j int) bool {
|
||
return s[i].GetUpperBound() < s[j].GetUpperBound()
|
||
}
|