221 lines
6.8 KiB
Go
221 lines
6.8 KiB
Go
// Copyright (c) 2012, Matt T. Proud
|
|
// All rights reserved.
|
|
//
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// histogram.go provides a basic histogram metric, which can accumulate scalar
|
|
// event values or samples. The underlying histogram implementation is designed
|
|
// to be performant in that it accepts tolerable inaccuracies.
|
|
|
|
// TOOD(mtp): Implement visualization and exporting.
|
|
|
|
package metrics
|
|
|
|
import (
|
|
"bytes"
|
|
"fmt"
|
|
"math"
|
|
"strconv"
|
|
)
|
|
|
|
// This generates count-buckets of equal size distributed along the open
|
|
// interval of lower to upper. For instance, {lower=0, upper=10, count=5}
|
|
// yields the following: [0, 2, 4, 6, 8].
|
|
func EquallySizedBucketsFor(lower, upper float64, count int) []float64 {
|
|
buckets := make([]float64, count)
|
|
|
|
partitionSize := (upper - lower) / float64(count)
|
|
|
|
for i := 0; i < count; i++ {
|
|
m := float64(i)
|
|
buckets[i] = lower + (m * partitionSize)
|
|
}
|
|
|
|
return buckets
|
|
}
|
|
|
|
// This generates log2-sized buckets spanning from lower to upper inclusively
|
|
// as well as values beyond it.
|
|
func LogarithmicSizedBucketsFor(lower, upper float64) []float64 {
|
|
bucketCount := int(math.Ceil(math.Log2(upper)))
|
|
|
|
buckets := make([]float64, bucketCount)
|
|
|
|
for i, j := 0, 0.0; i < bucketCount; i, j = i+1, math.Pow(2, float64(i+1.0)) {
|
|
buckets[i] = j
|
|
}
|
|
|
|
return buckets
|
|
}
|
|
|
|
// A HistogramSpecification defines how a Histogram is to be built.
|
|
type HistogramSpecification struct {
|
|
Starts []float64
|
|
BucketMaker BucketBuilder
|
|
ReportablePercentiles []float64
|
|
}
|
|
|
|
// The histogram is an accumulator for samples. It merely routes into which
|
|
// to bucket to capture an event and provides a percentile calculation
|
|
// mechanism.
|
|
//
|
|
// Histogram makes do without locking by employing the law of large numbers
|
|
// to presume a convergence toward a given bucket distribution. Locking
|
|
// may be implemented in the buckets themselves, though.
|
|
type Histogram struct {
|
|
// This represents the open interval's start at which values shall be added to
|
|
// the bucket. The interval continues until the beginning of the next bucket
|
|
// exclusive or positive infinity.
|
|
//
|
|
// N.B.
|
|
// - bucketStarts should be sorted in ascending order;
|
|
// - len(bucketStarts) must be equivalent to len(buckets);
|
|
// - The index of a given bucketStarts' element is presumed to match
|
|
// correspond to the appropriate element in buckets.
|
|
bucketStarts []float64
|
|
// These are the buckets that capture samples as they are emitted to the
|
|
// histogram. Please consult the reference interface and its implements for
|
|
// further details about behavior expectations.
|
|
buckets []Bucket
|
|
// These are the percentile values that will be reported on marshalling.
|
|
reportablePercentiles []float64
|
|
}
|
|
|
|
func (h *Histogram) Add(value float64) {
|
|
lastIndex := 0
|
|
|
|
for i, bucketStart := range h.bucketStarts {
|
|
if value < bucketStart {
|
|
break
|
|
}
|
|
|
|
lastIndex = i
|
|
}
|
|
|
|
h.buckets[lastIndex].Add(value)
|
|
}
|
|
|
|
func (h *Histogram) Humanize() string {
|
|
stringBuffer := bytes.NewBufferString("")
|
|
stringBuffer.WriteString("[Histogram { ")
|
|
|
|
for i, bucketStart := range h.bucketStarts {
|
|
bucket := h.buckets[i]
|
|
stringBuffer.WriteString(fmt.Sprintf("[%f, inf) = %s, ", bucketStart, bucket.Humanize()))
|
|
}
|
|
|
|
stringBuffer.WriteString("}]")
|
|
|
|
return string(stringBuffer.Bytes())
|
|
}
|
|
|
|
func previousCumulativeObservations(cumulativeObservations []int, bucketIndex int) int {
|
|
if bucketIndex == 0 {
|
|
return 0
|
|
}
|
|
|
|
return cumulativeObservations[bucketIndex-1]
|
|
}
|
|
|
|
func prospectiveIndexForPercentile(percentile float64, totalObservations int) int {
|
|
return int(math.Floor(percentile * float64(totalObservations)))
|
|
}
|
|
|
|
// Find what bucket and element index contains a given percentile value.
|
|
// If a percentile is requested that results in a corresponding index that is no
|
|
// longer contained by the bucket, the index of the last item is returned. This
|
|
// may occur if the underlying bucket catalogs values and employs an eviction
|
|
// strategy.
|
|
func (h *Histogram) bucketForPercentile(percentile float64) (bucket *Bucket, index int) {
|
|
bucketCount := len(h.buckets)
|
|
|
|
// This captures the quantity of samples in a given bucket's range.
|
|
observationsByBucket := make([]int, bucketCount)
|
|
// This captures the cumulative quantity of observations from all preceding
|
|
// buckets up and to the end of this bucket.
|
|
cumulativeObservationsByBucket := make([]int, bucketCount)
|
|
|
|
var totalObservations int = 0
|
|
|
|
for i, bucket := range h.buckets {
|
|
observations := bucket.Observations()
|
|
observationsByBucket[i] = observations
|
|
totalObservations += bucket.Observations()
|
|
cumulativeObservationsByBucket[i] = totalObservations
|
|
}
|
|
|
|
// This captures the index offset where the given percentile value would be
|
|
// were all submitted samples stored and never down-/re-sampled nor deleted
|
|
// and housed in a singular array.
|
|
prospectiveIndex := prospectiveIndexForPercentile(percentile, totalObservations)
|
|
|
|
for i, cumulativeObservation := range cumulativeObservationsByBucket {
|
|
if cumulativeObservation == 0 {
|
|
continue
|
|
}
|
|
|
|
// Find the bucket that contains the given index.
|
|
if cumulativeObservation >= prospectiveIndex {
|
|
var subIndex int
|
|
// This calculates the index within the current bucket where the given
|
|
// percentile may be found.
|
|
subIndex = prospectiveIndex - previousCumulativeObservations(cumulativeObservationsByBucket, i)
|
|
// Sometimes the index may be the last item, in which case we need to
|
|
// take this into account. This is probably indicative of an underlying
|
|
// problem.
|
|
if observationsByBucket[i] == subIndex {
|
|
subIndex--
|
|
}
|
|
|
|
return &h.buckets[i], subIndex
|
|
}
|
|
}
|
|
|
|
return &h.buckets[0], 0
|
|
}
|
|
|
|
// Return the histogram's estimate of the value for a given percentile of
|
|
// collected samples. The requested percentile is expected to be a real
|
|
// value within (0, 1.0].
|
|
func (h *Histogram) Percentile(percentile float64) float64 {
|
|
bucket, index := h.bucketForPercentile(percentile)
|
|
|
|
return (*bucket).ValueForIndex(index)
|
|
}
|
|
|
|
func (h *Histogram) Marshallable() map[string]interface{} {
|
|
numberOfPercentiles := len(h.reportablePercentiles)
|
|
result := make(map[string]interface{}, 2)
|
|
|
|
result["type"] = "histogram"
|
|
|
|
value := make(map[string]interface{}, numberOfPercentiles)
|
|
|
|
for _, percentile := range h.reportablePercentiles {
|
|
percentileString := strconv.FormatFloat(percentile, 'f', 6, 64)
|
|
value[percentileString] = strconv.FormatFloat(h.Percentile(percentile), 'f', 6, 64)
|
|
}
|
|
|
|
result["value"] = value
|
|
|
|
return result
|
|
}
|
|
|
|
// Produce a histogram from a given specification.
|
|
func CreateHistogram(specification *HistogramSpecification) *Histogram {
|
|
bucketCount := len(specification.Starts)
|
|
|
|
metric := &Histogram{
|
|
bucketStarts: specification.Starts,
|
|
buckets: make([]Bucket, bucketCount),
|
|
reportablePercentiles: specification.ReportablePercentiles,
|
|
}
|
|
|
|
for i := 0; i < bucketCount; i++ {
|
|
metric.buckets[i] = specification.BucketMaker()
|
|
}
|
|
|
|
return metric
|
|
}
|