1854 lines
74 KiB
Go
1854 lines
74 KiB
Go
// Copyright 2015 The Prometheus Authors
|
||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
// you may not use this file except in compliance with the License.
|
||
// You may obtain a copy of the License at
|
||
//
|
||
// http://www.apache.org/licenses/LICENSE-2.0
|
||
//
|
||
// Unless required by applicable law or agreed to in writing, software
|
||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
// See the License for the specific language governing permissions and
|
||
// limitations under the License.
|
||
|
||
package prometheus
|
||
|
||
import (
|
||
"fmt"
|
||
"math"
|
||
"runtime"
|
||
"sort"
|
||
"sync"
|
||
"sync/atomic"
|
||
"time"
|
||
|
||
dto "github.com/prometheus/client_model/go"
|
||
|
||
"google.golang.org/protobuf/proto"
|
||
"google.golang.org/protobuf/types/known/timestamppb"
|
||
)
|
||
|
||
// nativeHistogramBounds for the frac of observed values. Only relevant for
|
||
// schema > 0. The position in the slice is the schema. (0 is never used, just
|
||
// here for convenience of using the schema directly as the index.)
|
||
//
|
||
// TODO(beorn7): Currently, we do a binary search into these slices. There are
|
||
// ways to turn it into a small number of simple array lookups. It probably only
|
||
// matters for schema 5 and beyond, but should be investigated. See this comment
|
||
// as a starting point:
|
||
// https://github.com/open-telemetry/opentelemetry-specification/issues/1776#issuecomment-870164310
|
||
var nativeHistogramBounds = [][]float64{
|
||
// Schema "0":
|
||
{0.5},
|
||
// Schema 1:
|
||
{0.5, 0.7071067811865475},
|
||
// Schema 2:
|
||
{0.5, 0.5946035575013605, 0.7071067811865475, 0.8408964152537144},
|
||
// Schema 3:
|
||
{
|
||
0.5, 0.5452538663326288, 0.5946035575013605, 0.6484197773255048,
|
||
0.7071067811865475, 0.7711054127039704, 0.8408964152537144, 0.9170040432046711,
|
||
},
|
||
// Schema 4:
|
||
{
|
||
0.5, 0.5221368912137069, 0.5452538663326288, 0.5693943173783458,
|
||
0.5946035575013605, 0.620928906036742, 0.6484197773255048, 0.6771277734684463,
|
||
0.7071067811865475, 0.7384130729697496, 0.7711054127039704, 0.805245165974627,
|
||
0.8408964152537144, 0.8781260801866495, 0.9170040432046711, 0.9576032806985735,
|
||
},
|
||
// Schema 5:
|
||
{
|
||
0.5, 0.5109485743270583, 0.5221368912137069, 0.5335702003384117,
|
||
0.5452538663326288, 0.5571933712979462, 0.5693943173783458, 0.5818624293887887,
|
||
0.5946035575013605, 0.6076236799902344, 0.620928906036742, 0.6345254785958666,
|
||
0.6484197773255048, 0.6626183215798706, 0.6771277734684463, 0.6919549409819159,
|
||
0.7071067811865475, 0.7225904034885232, 0.7384130729697496, 0.7545822137967112,
|
||
0.7711054127039704, 0.7879904225539431, 0.805245165974627, 0.8228777390769823,
|
||
0.8408964152537144, 0.8593096490612387, 0.8781260801866495, 0.8973545375015533,
|
||
0.9170040432046711, 0.9370838170551498, 0.9576032806985735, 0.9785720620876999,
|
||
},
|
||
// Schema 6:
|
||
{
|
||
0.5, 0.5054446430258502, 0.5109485743270583, 0.5165124395106142,
|
||
0.5221368912137069, 0.5278225891802786, 0.5335702003384117, 0.5393803988785598,
|
||
0.5452538663326288, 0.5511912916539204, 0.5571933712979462, 0.5632608093041209,
|
||
0.5693943173783458, 0.5755946149764913, 0.5818624293887887, 0.5881984958251406,
|
||
0.5946035575013605, 0.6010783657263515, 0.6076236799902344, 0.6142402680534349,
|
||
0.620928906036742, 0.6276903785123455, 0.6345254785958666, 0.6414350080393891,
|
||
0.6484197773255048, 0.6554806057623822, 0.6626183215798706, 0.6698337620266515,
|
||
0.6771277734684463, 0.6845012114872953, 0.6919549409819159, 0.6994898362691555,
|
||
0.7071067811865475, 0.7148066691959849, 0.7225904034885232, 0.7304588970903234,
|
||
0.7384130729697496, 0.7464538641456323, 0.7545822137967112, 0.762799075372269,
|
||
0.7711054127039704, 0.7795022001189185, 0.7879904225539431, 0.7965710756711334,
|
||
0.805245165974627, 0.8140137109286738, 0.8228777390769823, 0.8318382901633681,
|
||
0.8408964152537144, 0.8500531768592616, 0.8593096490612387, 0.8686669176368529,
|
||
0.8781260801866495, 0.8876882462632604, 0.8973545375015533, 0.9071260877501991,
|
||
0.9170040432046711, 0.9269895625416926, 0.9370838170551498, 0.9472879907934827,
|
||
0.9576032806985735, 0.9680308967461471, 0.9785720620876999, 0.9892280131939752,
|
||
},
|
||
// Schema 7:
|
||
{
|
||
0.5, 0.5027149505564014, 0.5054446430258502, 0.5081891574554764,
|
||
0.5109485743270583, 0.5137229745593818, 0.5165124395106142, 0.5193170509806894,
|
||
0.5221368912137069, 0.5249720429003435, 0.5278225891802786, 0.5306886136446309,
|
||
0.5335702003384117, 0.5364674337629877, 0.5393803988785598, 0.5423091811066545,
|
||
0.5452538663326288, 0.5482145409081883, 0.5511912916539204, 0.5541842058618393,
|
||
0.5571933712979462, 0.5602188762048033, 0.5632608093041209, 0.5663192597993595,
|
||
0.5693943173783458, 0.572486072215902, 0.5755946149764913, 0.5787200368168754,
|
||
0.5818624293887887, 0.585021884841625, 0.5881984958251406, 0.5913923554921704,
|
||
0.5946035575013605, 0.5978321960199137, 0.6010783657263515, 0.6043421618132907,
|
||
0.6076236799902344, 0.6109230164863786, 0.6142402680534349, 0.6175755319684665,
|
||
0.620928906036742, 0.6243004885946023, 0.6276903785123455, 0.6310986751971253,
|
||
0.6345254785958666, 0.637970889198196, 0.6414350080393891, 0.6449179367033329,
|
||
0.6484197773255048, 0.6519406325959679, 0.6554806057623822, 0.659039800633032,
|
||
0.6626183215798706, 0.6662162735415805, 0.6698337620266515, 0.6734708931164728,
|
||
0.6771277734684463, 0.6808045103191123, 0.6845012114872953, 0.688217985377265,
|
||
0.6919549409819159, 0.6957121878859629, 0.6994898362691555, 0.7032879969095076,
|
||
0.7071067811865475, 0.7109463010845827, 0.7148066691959849, 0.718687998724491,
|
||
0.7225904034885232, 0.7265139979245261, 0.7304588970903234, 0.7344252166684908,
|
||
0.7384130729697496, 0.7424225829363761, 0.7464538641456323, 0.7505070348132126,
|
||
0.7545822137967112, 0.7586795205991071, 0.762799075372269, 0.7669409989204777,
|
||
0.7711054127039704, 0.7752924388424999, 0.7795022001189185, 0.7837348199827764,
|
||
0.7879904225539431, 0.7922691326262467, 0.7965710756711334, 0.8008963778413465,
|
||
0.805245165974627, 0.8096175675974316, 0.8140137109286738, 0.8184337248834821,
|
||
0.8228777390769823, 0.8273458838280969, 0.8318382901633681, 0.8363550898207981,
|
||
0.8408964152537144, 0.8454623996346523, 0.8500531768592616, 0.8546688815502312,
|
||
0.8593096490612387, 0.8639756154809185, 0.8686669176368529, 0.8733836930995842,
|
||
0.8781260801866495, 0.8828942179666361, 0.8876882462632604, 0.8925083056594671,
|
||
0.8973545375015533, 0.9022270839033115, 0.9071260877501991, 0.9120516927035263,
|
||
0.9170040432046711, 0.9219832844793128, 0.9269895625416926, 0.9320230241988943,
|
||
0.9370838170551498, 0.9421720895161669, 0.9472879907934827, 0.9524316709088368,
|
||
0.9576032806985735, 0.9628029718180622, 0.9680308967461471, 0.9732872087896164,
|
||
0.9785720620876999, 0.9838856116165875, 0.9892280131939752, 0.9945994234836328,
|
||
},
|
||
// Schema 8:
|
||
{
|
||
0.5, 0.5013556375251013, 0.5027149505564014, 0.5040779490592088,
|
||
0.5054446430258502, 0.5068150424757447, 0.5081891574554764, 0.509566998038869,
|
||
0.5109485743270583, 0.5123338964485679, 0.5137229745593818, 0.5151158188430205,
|
||
0.5165124395106142, 0.5179128468009786, 0.5193170509806894, 0.520725062344158,
|
||
0.5221368912137069, 0.5235525479396449, 0.5249720429003435, 0.526395386502313,
|
||
0.5278225891802786, 0.5292536613972564, 0.5306886136446309, 0.5321274564422321,
|
||
0.5335702003384117, 0.5350168559101208, 0.5364674337629877, 0.5379219445313954,
|
||
0.5393803988785598, 0.5408428074966075, 0.5423091811066545, 0.5437795304588847,
|
||
0.5452538663326288, 0.5467321995364429, 0.5482145409081883, 0.549700901315111,
|
||
0.5511912916539204, 0.5526857228508706, 0.5541842058618393, 0.5556867516724088,
|
||
0.5571933712979462, 0.5587040757836845, 0.5602188762048033, 0.5617377836665098,
|
||
0.5632608093041209, 0.564787964283144, 0.5663192597993595, 0.5678547070789026,
|
||
0.5693943173783458, 0.5709381019847808, 0.572486072215902, 0.5740382394200894,
|
||
0.5755946149764913, 0.5771552102951081, 0.5787200368168754, 0.5802891060137493,
|
||
0.5818624293887887, 0.5834400184762408, 0.585021884841625, 0.5866080400818185,
|
||
0.5881984958251406, 0.5897932637314379, 0.5913923554921704, 0.5929957828304968,
|
||
0.5946035575013605, 0.5962156912915756, 0.5978321960199137, 0.5994530835371903,
|
||
0.6010783657263515, 0.6027080545025619, 0.6043421618132907, 0.6059806996384005,
|
||
0.6076236799902344, 0.6092711149137041, 0.6109230164863786, 0.6125793968185725,
|
||
0.6142402680534349, 0.6159056423670379, 0.6175755319684665, 0.6192499490999082,
|
||
0.620928906036742, 0.622612415087629, 0.6243004885946023, 0.6259931389331581,
|
||
0.6276903785123455, 0.6293922197748583, 0.6310986751971253, 0.6328097572894031,
|
||
0.6345254785958666, 0.6362458516947014, 0.637970889198196, 0.6397006037528346,
|
||
0.6414350080393891, 0.6431741147730128, 0.6449179367033329, 0.6466664866145447,
|
||
0.6484197773255048, 0.6501778216898253, 0.6519406325959679, 0.6537082229673385,
|
||
0.6554806057623822, 0.6572577939746774, 0.659039800633032, 0.6608266388015788,
|
||
0.6626183215798706, 0.6644148621029772, 0.6662162735415805, 0.6680225691020727,
|
||
0.6698337620266515, 0.6716498655934177, 0.6734708931164728, 0.6752968579460171,
|
||
0.6771277734684463, 0.6789636531064505, 0.6808045103191123, 0.6826503586020058,
|
||
0.6845012114872953, 0.6863570825438342, 0.688217985377265, 0.690083933630119,
|
||
0.6919549409819159, 0.6938310211492645, 0.6957121878859629, 0.6975984549830999,
|
||
0.6994898362691555, 0.7013863456101023, 0.7032879969095076, 0.7051948041086352,
|
||
0.7071067811865475, 0.7090239421602076, 0.7109463010845827, 0.7128738720527471,
|
||
0.7148066691959849, 0.7167447066838943, 0.718687998724491, 0.7206365595643126,
|
||
0.7225904034885232, 0.7245495448210174, 0.7265139979245261, 0.7284837772007218,
|
||
0.7304588970903234, 0.7324393720732029, 0.7344252166684908, 0.7364164454346837,
|
||
0.7384130729697496, 0.7404151139112358, 0.7424225829363761, 0.7444354947621984,
|
||
0.7464538641456323, 0.7484777058836176, 0.7505070348132126, 0.7525418658117031,
|
||
0.7545822137967112, 0.7566280937263048, 0.7586795205991071, 0.7607365094544071,
|
||
0.762799075372269, 0.7648672334736434, 0.7669409989204777, 0.7690203869158282,
|
||
0.7711054127039704, 0.7731960915705107, 0.7752924388424999, 0.7773944698885442,
|
||
0.7795022001189185, 0.7816156449856788, 0.7837348199827764, 0.7858597406461707,
|
||
0.7879904225539431, 0.7901268813264122, 0.7922691326262467, 0.7944171921585818,
|
||
0.7965710756711334, 0.7987307989543135, 0.8008963778413465, 0.8030678282083853,
|
||
0.805245165974627, 0.8074284071024302, 0.8096175675974316, 0.8118126635086642,
|
||
0.8140137109286738, 0.8162207259936375, 0.8184337248834821, 0.820652723822003,
|
||
0.8228777390769823, 0.8251087869603088, 0.8273458838280969, 0.8295890460808079,
|
||
0.8318382901633681, 0.8340936325652911, 0.8363550898207981, 0.8386226785089391,
|
||
0.8408964152537144, 0.8431763167241966, 0.8454623996346523, 0.8477546807446661,
|
||
0.8500531768592616, 0.8523579048290255, 0.8546688815502312, 0.8569861239649629,
|
||
0.8593096490612387, 0.8616394738731368, 0.8639756154809185, 0.8663180910111553,
|
||
0.8686669176368529, 0.871022112577578, 0.8733836930995842, 0.8757516765159389,
|
||
0.8781260801866495, 0.8805069215187917, 0.8828942179666361, 0.8852879870317771,
|
||
0.8876882462632604, 0.890095013257712, 0.8925083056594671, 0.8949281411607002,
|
||
0.8973545375015533, 0.8997875124702672, 0.9022270839033115, 0.9046732696855155,
|
||
0.9071260877501991, 0.909585556079304, 0.9120516927035263, 0.9145245157024483,
|
||
0.9170040432046711, 0.9194902933879467, 0.9219832844793128, 0.9244830347552253,
|
||
0.9269895625416926, 0.92950288621441, 0.9320230241988943, 0.9345499949706191,
|
||
0.9370838170551498, 0.93962450902828, 0.9421720895161669, 0.9447265771954693,
|
||
0.9472879907934827, 0.9498563490882775, 0.9524316709088368, 0.9550139751351947,
|
||
0.9576032806985735, 0.9601996065815236, 0.9628029718180622, 0.9654133954938133,
|
||
0.9680308967461471, 0.9706554947643201, 0.9732872087896164, 0.9759260581154889,
|
||
0.9785720620876999, 0.9812252401044634, 0.9838856116165875, 0.9865531961276168,
|
||
0.9892280131939752, 0.9919100824251095, 0.9945994234836328, 0.9972960560854698,
|
||
},
|
||
}
|
||
|
||
// The nativeHistogramBounds above can be generated with the code below.
|
||
//
|
||
// TODO(beorn7): It's tempting to actually use `go generate` to generate the
|
||
// code above. However, this could lead to slightly different numbers on
|
||
// different architectures. We still need to come to terms if we are fine with
|
||
// that, or if we might prefer to specify precise numbers in the standard.
|
||
//
|
||
// var nativeHistogramBounds [][]float64 = make([][]float64, 9)
|
||
//
|
||
// func init() {
|
||
// // Populate nativeHistogramBounds.
|
||
// numBuckets := 1
|
||
// for i := range nativeHistogramBounds {
|
||
// bounds := []float64{0.5}
|
||
// factor := math.Exp2(math.Exp2(float64(-i)))
|
||
// for j := 0; j < numBuckets-1; j++ {
|
||
// var bound float64
|
||
// if (j+1)%2 == 0 {
|
||
// // Use previously calculated value for increased precision.
|
||
// bound = nativeHistogramBounds[i-1][j/2+1]
|
||
// } else {
|
||
// bound = bounds[j] * factor
|
||
// }
|
||
// bounds = append(bounds, bound)
|
||
// }
|
||
// numBuckets *= 2
|
||
// nativeHistogramBounds[i] = bounds
|
||
// }
|
||
// }
|
||
|
||
// A Histogram counts individual observations from an event or sample stream in
|
||
// configurable static buckets (or in dynamic sparse buckets as part of the
|
||
// experimental Native Histograms, see below for more details). Similar to a
|
||
// Summary, it also provides a sum of observations and an observation count.
|
||
//
|
||
// On the Prometheus server, quantiles can be calculated from a Histogram using
|
||
// the histogram_quantile PromQL function.
|
||
//
|
||
// Note that Histograms, in contrast to Summaries, can be aggregated in PromQL
|
||
// (see the documentation for detailed procedures). However, Histograms require
|
||
// the user to pre-define suitable buckets, and they are in general less
|
||
// accurate. (Both problems are addressed by the experimental Native
|
||
// Histograms. To use them, configure a NativeHistogramBucketFactor in the
|
||
// HistogramOpts. They also require a Prometheus server v2.40+ with the
|
||
// corresponding feature flag enabled.)
|
||
//
|
||
// The Observe method of a Histogram has a very low performance overhead in
|
||
// comparison with the Observe method of a Summary.
|
||
//
|
||
// To create Histogram instances, use NewHistogram.
|
||
type Histogram interface {
|
||
Metric
|
||
Collector
|
||
|
||
// Observe adds a single observation to the histogram. Observations are
|
||
// usually positive or zero. Negative observations are accepted but
|
||
// prevent current versions of Prometheus from properly detecting
|
||
// counter resets in the sum of observations. (The experimental Native
|
||
// Histograms handle negative observations properly.) See
|
||
// https://prometheus.io/docs/practices/histograms/#count-and-sum-of-observations
|
||
// for details.
|
||
Observe(float64)
|
||
}
|
||
|
||
// bucketLabel is used for the label that defines the upper bound of a
|
||
// bucket of a histogram ("le" -> "less or equal").
|
||
const bucketLabel = "le"
|
||
|
||
// DefBuckets are the default Histogram buckets. The default buckets are
|
||
// tailored to broadly measure the response time (in seconds) of a network
|
||
// service. Most likely, however, you will be required to define buckets
|
||
// customized to your use case.
|
||
var DefBuckets = []float64{.005, .01, .025, .05, .1, .25, .5, 1, 2.5, 5, 10}
|
||
|
||
// DefNativeHistogramZeroThreshold is the default value for
|
||
// NativeHistogramZeroThreshold in the HistogramOpts.
|
||
//
|
||
// The value is 2^-128 (or 0.5*2^-127 in the actual IEEE 754 representation),
|
||
// which is a bucket boundary at all possible resolutions.
|
||
const DefNativeHistogramZeroThreshold = 2.938735877055719e-39
|
||
|
||
// NativeHistogramZeroThresholdZero can be used as NativeHistogramZeroThreshold
|
||
// in the HistogramOpts to create a zero bucket of width zero, i.e. a zero
|
||
// bucket that only receives observations of precisely zero.
|
||
const NativeHistogramZeroThresholdZero = -1
|
||
|
||
var errBucketLabelNotAllowed = fmt.Errorf(
|
||
"%q is not allowed as label name in histograms", bucketLabel,
|
||
)
|
||
|
||
// LinearBuckets creates 'count' regular buckets, each 'width' wide, where the
|
||
// lowest bucket has an upper bound of 'start'. The final +Inf bucket is not
|
||
// counted and not included in the returned slice. The returned slice is meant
|
||
// to be used for the Buckets field of HistogramOpts.
|
||
//
|
||
// The function panics if 'count' is zero or negative.
|
||
func LinearBuckets(start, width float64, count int) []float64 {
|
||
if count < 1 {
|
||
panic("LinearBuckets needs a positive count")
|
||
}
|
||
buckets := make([]float64, count)
|
||
for i := range buckets {
|
||
buckets[i] = start
|
||
start += width
|
||
}
|
||
return buckets
|
||
}
|
||
|
||
// ExponentialBuckets creates 'count' regular buckets, where the lowest bucket
|
||
// has an upper bound of 'start' and each following bucket's upper bound is
|
||
// 'factor' times the previous bucket's upper bound. The final +Inf bucket is
|
||
// not counted and not included in the returned slice. The returned slice is
|
||
// meant to be used for the Buckets field of HistogramOpts.
|
||
//
|
||
// The function panics if 'count' is 0 or negative, if 'start' is 0 or negative,
|
||
// or if 'factor' is less than or equal 1.
|
||
func ExponentialBuckets(start, factor float64, count int) []float64 {
|
||
if count < 1 {
|
||
panic("ExponentialBuckets needs a positive count")
|
||
}
|
||
if start <= 0 {
|
||
panic("ExponentialBuckets needs a positive start value")
|
||
}
|
||
if factor <= 1 {
|
||
panic("ExponentialBuckets needs a factor greater than 1")
|
||
}
|
||
buckets := make([]float64, count)
|
||
for i := range buckets {
|
||
buckets[i] = start
|
||
start *= factor
|
||
}
|
||
return buckets
|
||
}
|
||
|
||
// ExponentialBucketsRange creates 'count' buckets, where the lowest bucket is
|
||
// 'min' and the highest bucket is 'max'. The final +Inf bucket is not counted
|
||
// and not included in the returned slice. The returned slice is meant to be
|
||
// used for the Buckets field of HistogramOpts.
|
||
//
|
||
// The function panics if 'count' is 0 or negative, if 'min' is 0 or negative.
|
||
func ExponentialBucketsRange(minBucket, maxBucket float64, count int) []float64 {
|
||
if count < 1 {
|
||
panic("ExponentialBucketsRange count needs a positive count")
|
||
}
|
||
if minBucket <= 0 {
|
||
panic("ExponentialBucketsRange min needs to be greater than 0")
|
||
}
|
||
|
||
// Formula for exponential buckets.
|
||
// max = min*growthFactor^(bucketCount-1)
|
||
|
||
// We know max/min and highest bucket. Solve for growthFactor.
|
||
growthFactor := math.Pow(maxBucket/minBucket, 1.0/float64(count-1))
|
||
|
||
// Now that we know growthFactor, solve for each bucket.
|
||
buckets := make([]float64, count)
|
||
for i := 1; i <= count; i++ {
|
||
buckets[i-1] = minBucket * math.Pow(growthFactor, float64(i-1))
|
||
}
|
||
return buckets
|
||
}
|
||
|
||
// HistogramOpts bundles the options for creating a Histogram metric. It is
|
||
// mandatory to set Name to a non-empty string. All other fields are optional
|
||
// and can safely be left at their zero value, although it is strongly
|
||
// encouraged to set a Help string.
|
||
type HistogramOpts struct {
|
||
// Namespace, Subsystem, and Name are components of the fully-qualified
|
||
// name of the Histogram (created by joining these components with
|
||
// "_"). Only Name is mandatory, the others merely help structuring the
|
||
// name. Note that the fully-qualified name of the Histogram must be a
|
||
// valid Prometheus metric name.
|
||
Namespace string
|
||
Subsystem string
|
||
Name string
|
||
|
||
// Help provides information about this Histogram.
|
||
//
|
||
// Metrics with the same fully-qualified name must have the same Help
|
||
// string.
|
||
Help string
|
||
|
||
// ConstLabels are used to attach fixed labels to this metric. Metrics
|
||
// with the same fully-qualified name must have the same label names in
|
||
// their ConstLabels.
|
||
//
|
||
// ConstLabels are only used rarely. In particular, do not use them to
|
||
// attach the same labels to all your metrics. Those use cases are
|
||
// better covered by target labels set by the scraping Prometheus
|
||
// server, or by one specific metric (e.g. a build_info or a
|
||
// machine_role metric). See also
|
||
// https://prometheus.io/docs/instrumenting/writing_exporters/#target-labels-not-static-scraped-labels
|
||
ConstLabels Labels
|
||
|
||
// Buckets defines the buckets into which observations are counted. Each
|
||
// element in the slice is the upper inclusive bound of a bucket. The
|
||
// values must be sorted in strictly increasing order. There is no need
|
||
// to add a highest bucket with +Inf bound, it will be added
|
||
// implicitly. If Buckets is left as nil or set to a slice of length
|
||
// zero, it is replaced by default buckets. The default buckets are
|
||
// DefBuckets if no buckets for a native histogram (see below) are used,
|
||
// otherwise the default is no buckets. (In other words, if you want to
|
||
// use both regular buckets and buckets for a native histogram, you have
|
||
// to define the regular buckets here explicitly.)
|
||
Buckets []float64
|
||
|
||
// If NativeHistogramBucketFactor is greater than one, so-called sparse
|
||
// buckets are used (in addition to the regular buckets, if defined
|
||
// above). A Histogram with sparse buckets will be ingested as a Native
|
||
// Histogram by a Prometheus server with that feature enabled (requires
|
||
// Prometheus v2.40+). Sparse buckets are exponential buckets covering
|
||
// the whole float64 range (with the exception of the “zero” bucket, see
|
||
// NativeHistogramZeroThreshold below). From any one bucket to the next,
|
||
// the width of the bucket grows by a constant
|
||
// factor. NativeHistogramBucketFactor provides an upper bound for this
|
||
// factor (exception see below). The smaller
|
||
// NativeHistogramBucketFactor, the more buckets will be used and thus
|
||
// the more costly the histogram will become. A generally good trade-off
|
||
// between cost and accuracy is a value of 1.1 (each bucket is at most
|
||
// 10% wider than the previous one), which will result in each power of
|
||
// two divided into 8 buckets (e.g. there will be 8 buckets between 1
|
||
// and 2, same as between 2 and 4, and 4 and 8, etc.).
|
||
//
|
||
// Details about the actually used factor: The factor is calculated as
|
||
// 2^(2^-n), where n is an integer number between (and including) -4 and
|
||
// 8. n is chosen so that the resulting factor is the largest that is
|
||
// still smaller or equal to NativeHistogramBucketFactor. Note that the
|
||
// smallest possible factor is therefore approx. 1.00271 (i.e. 2^(2^-8)
|
||
// ). If NativeHistogramBucketFactor is greater than 1 but smaller than
|
||
// 2^(2^-8), then the actually used factor is still 2^(2^-8) even though
|
||
// it is larger than the provided NativeHistogramBucketFactor.
|
||
//
|
||
// NOTE: Native Histograms are still an experimental feature. Their
|
||
// behavior might still change without a major version
|
||
// bump. Subsequently, all NativeHistogram... options here might still
|
||
// change their behavior or name (or might completely disappear) without
|
||
// a major version bump.
|
||
NativeHistogramBucketFactor float64
|
||
// All observations with an absolute value of less or equal
|
||
// NativeHistogramZeroThreshold are accumulated into a “zero” bucket.
|
||
// For best results, this should be close to a bucket boundary. This is
|
||
// usually the case if picking a power of two. If
|
||
// NativeHistogramZeroThreshold is left at zero,
|
||
// DefNativeHistogramZeroThreshold is used as the threshold. To
|
||
// configure a zero bucket with an actual threshold of zero (i.e. only
|
||
// observations of precisely zero will go into the zero bucket), set
|
||
// NativeHistogramZeroThreshold to the NativeHistogramZeroThresholdZero
|
||
// constant (or any negative float value).
|
||
NativeHistogramZeroThreshold float64
|
||
|
||
// The next three fields define a strategy to limit the number of
|
||
// populated sparse buckets. If NativeHistogramMaxBucketNumber is left
|
||
// at zero, the number of buckets is not limited. (Note that this might
|
||
// lead to unbounded memory consumption if the values observed by the
|
||
// Histogram are sufficiently wide-spread. In particular, this could be
|
||
// used as a DoS attack vector. Where the observed values depend on
|
||
// external inputs, it is highly recommended to set a
|
||
// NativeHistogramMaxBucketNumber.) Once the set
|
||
// NativeHistogramMaxBucketNumber is exceeded, the following strategy is
|
||
// enacted:
|
||
// - First, if the last reset (or the creation) of the histogram is at
|
||
// least NativeHistogramMinResetDuration ago, then the whole
|
||
// histogram is reset to its initial state (including regular
|
||
// buckets).
|
||
// - If less time has passed, or if NativeHistogramMinResetDuration is
|
||
// zero, no reset is performed. Instead, the zero threshold is
|
||
// increased sufficiently to reduce the number of buckets to or below
|
||
// NativeHistogramMaxBucketNumber, but not to more than
|
||
// NativeHistogramMaxZeroThreshold. Thus, if
|
||
// NativeHistogramMaxZeroThreshold is already at or below the current
|
||
// zero threshold, nothing happens at this step.
|
||
// - After that, if the number of buckets still exceeds
|
||
// NativeHistogramMaxBucketNumber, the resolution of the histogram is
|
||
// reduced by doubling the width of the sparse buckets (up to a
|
||
// growth factor between one bucket to the next of 2^(2^4) = 65536,
|
||
// see above).
|
||
// - Any increased zero threshold or reduced resolution is reset back
|
||
// to their original values once NativeHistogramMinResetDuration has
|
||
// passed (since the last reset or the creation of the histogram).
|
||
NativeHistogramMaxBucketNumber uint32
|
||
NativeHistogramMinResetDuration time.Duration
|
||
NativeHistogramMaxZeroThreshold float64
|
||
|
||
// NativeHistogramMaxExemplars limits the number of exemplars
|
||
// that are kept in memory for each native histogram. If you leave it at
|
||
// zero, a default value of 10 is used. If no exemplars should be kept specifically
|
||
// for native histograms, set it to a negative value. (Scrapers can
|
||
// still use the exemplars exposed for classic buckets, which are managed
|
||
// independently.)
|
||
NativeHistogramMaxExemplars int
|
||
// NativeHistogramExemplarTTL is only checked once
|
||
// NativeHistogramMaxExemplars is exceeded. In that case, the
|
||
// oldest exemplar is removed if it is older than NativeHistogramExemplarTTL.
|
||
// Otherwise, the older exemplar in the pair of exemplars that are closest
|
||
// together (on an exponential scale) is removed.
|
||
// If NativeHistogramExemplarTTL is left at its zero value, a default value of
|
||
// 5m is used. To always delete the oldest exemplar, set it to a negative value.
|
||
NativeHistogramExemplarTTL time.Duration
|
||
|
||
// now is for testing purposes, by default it's time.Now.
|
||
now func() time.Time
|
||
|
||
// afterFunc is for testing purposes, by default it's time.AfterFunc.
|
||
afterFunc func(time.Duration, func()) *time.Timer
|
||
}
|
||
|
||
// HistogramVecOpts bundles the options to create a HistogramVec metric.
|
||
// It is mandatory to set HistogramOpts, see there for mandatory fields. VariableLabels
|
||
// is optional and can safely be left to its default value.
|
||
type HistogramVecOpts struct {
|
||
HistogramOpts
|
||
|
||
// VariableLabels are used to partition the metric vector by the given set
|
||
// of labels. Each label value will be constrained with the optional Constraint
|
||
// function, if provided.
|
||
VariableLabels ConstrainableLabels
|
||
}
|
||
|
||
// NewHistogram creates a new Histogram based on the provided HistogramOpts. It
|
||
// panics if the buckets in HistogramOpts are not in strictly increasing order.
|
||
//
|
||
// The returned implementation also implements ExemplarObserver. It is safe to
|
||
// perform the corresponding type assertion. Exemplars are tracked separately
|
||
// for each bucket.
|
||
func NewHistogram(opts HistogramOpts) Histogram {
|
||
return newHistogram(
|
||
NewDesc(
|
||
BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),
|
||
opts.Help,
|
||
nil,
|
||
opts.ConstLabels,
|
||
),
|
||
opts,
|
||
)
|
||
}
|
||
|
||
func newHistogram(desc *Desc, opts HistogramOpts, labelValues ...string) Histogram {
|
||
if len(desc.variableLabels.names) != len(labelValues) {
|
||
panic(makeInconsistentCardinalityError(desc.fqName, desc.variableLabels.names, labelValues))
|
||
}
|
||
|
||
for _, n := range desc.variableLabels.names {
|
||
if n == bucketLabel {
|
||
panic(errBucketLabelNotAllowed)
|
||
}
|
||
}
|
||
for _, lp := range desc.constLabelPairs {
|
||
if lp.GetName() == bucketLabel {
|
||
panic(errBucketLabelNotAllowed)
|
||
}
|
||
}
|
||
|
||
if opts.now == nil {
|
||
opts.now = time.Now
|
||
}
|
||
if opts.afterFunc == nil {
|
||
opts.afterFunc = time.AfterFunc
|
||
}
|
||
|
||
h := &histogram{
|
||
desc: desc,
|
||
upperBounds: opts.Buckets,
|
||
labelPairs: MakeLabelPairs(desc, labelValues),
|
||
nativeHistogramMaxBuckets: opts.NativeHistogramMaxBucketNumber,
|
||
nativeHistogramMaxZeroThreshold: opts.NativeHistogramMaxZeroThreshold,
|
||
nativeHistogramMinResetDuration: opts.NativeHistogramMinResetDuration,
|
||
lastResetTime: opts.now(),
|
||
now: opts.now,
|
||
afterFunc: opts.afterFunc,
|
||
}
|
||
if len(h.upperBounds) == 0 && opts.NativeHistogramBucketFactor <= 1 {
|
||
h.upperBounds = DefBuckets
|
||
}
|
||
if opts.NativeHistogramBucketFactor <= 1 {
|
||
h.nativeHistogramSchema = math.MinInt32 // To mark that there are no sparse buckets.
|
||
} else {
|
||
switch {
|
||
case opts.NativeHistogramZeroThreshold > 0:
|
||
h.nativeHistogramZeroThreshold = opts.NativeHistogramZeroThreshold
|
||
case opts.NativeHistogramZeroThreshold == 0:
|
||
h.nativeHistogramZeroThreshold = DefNativeHistogramZeroThreshold
|
||
} // Leave h.nativeHistogramZeroThreshold at 0 otherwise.
|
||
h.nativeHistogramSchema = pickSchema(opts.NativeHistogramBucketFactor)
|
||
h.nativeExemplars = makeNativeExemplars(opts.NativeHistogramExemplarTTL, opts.NativeHistogramMaxExemplars)
|
||
}
|
||
for i, upperBound := range h.upperBounds {
|
||
if i < len(h.upperBounds)-1 {
|
||
if upperBound >= h.upperBounds[i+1] {
|
||
panic(fmt.Errorf(
|
||
"histogram buckets must be in increasing order: %f >= %f",
|
||
upperBound, h.upperBounds[i+1],
|
||
))
|
||
}
|
||
} else {
|
||
if math.IsInf(upperBound, +1) {
|
||
// The +Inf bucket is implicit. Remove it here.
|
||
h.upperBounds = h.upperBounds[:i]
|
||
}
|
||
}
|
||
}
|
||
// Finally we know the final length of h.upperBounds and can make buckets
|
||
// for both counts as well as exemplars:
|
||
h.counts[0] = &histogramCounts{buckets: make([]uint64, len(h.upperBounds))}
|
||
atomic.StoreUint64(&h.counts[0].nativeHistogramZeroThresholdBits, math.Float64bits(h.nativeHistogramZeroThreshold))
|
||
atomic.StoreInt32(&h.counts[0].nativeHistogramSchema, h.nativeHistogramSchema)
|
||
h.counts[1] = &histogramCounts{buckets: make([]uint64, len(h.upperBounds))}
|
||
atomic.StoreUint64(&h.counts[1].nativeHistogramZeroThresholdBits, math.Float64bits(h.nativeHistogramZeroThreshold))
|
||
atomic.StoreInt32(&h.counts[1].nativeHistogramSchema, h.nativeHistogramSchema)
|
||
h.exemplars = make([]atomic.Value, len(h.upperBounds)+1)
|
||
|
||
h.init(h) // Init self-collection.
|
||
return h
|
||
}
|
||
|
||
type histogramCounts struct {
|
||
// Order in this struct matters for the alignment required by atomic
|
||
// operations, see http://golang.org/pkg/sync/atomic/#pkg-note-BUG
|
||
|
||
// sumBits contains the bits of the float64 representing the sum of all
|
||
// observations.
|
||
sumBits uint64
|
||
count uint64
|
||
|
||
// nativeHistogramZeroBucket counts all (positive and negative)
|
||
// observations in the zero bucket (with an absolute value less or equal
|
||
// the current threshold, see next field.
|
||
nativeHistogramZeroBucket uint64
|
||
// nativeHistogramZeroThresholdBits is the bit pattern of the current
|
||
// threshold for the zero bucket. It's initially equal to
|
||
// nativeHistogramZeroThreshold but may change according to the bucket
|
||
// count limitation strategy.
|
||
nativeHistogramZeroThresholdBits uint64
|
||
// nativeHistogramSchema may change over time according to the bucket
|
||
// count limitation strategy and therefore has to be saved here.
|
||
nativeHistogramSchema int32
|
||
// Number of (positive and negative) sparse buckets.
|
||
nativeHistogramBucketsNumber uint32
|
||
|
||
// Regular buckets.
|
||
buckets []uint64
|
||
|
||
// The sparse buckets for native histograms are implemented with a
|
||
// sync.Map for now. A dedicated data structure will likely be more
|
||
// efficient. There are separate maps for negative and positive
|
||
// observations. The map's value is an *int64, counting observations in
|
||
// that bucket. (Note that we don't use uint64 as an int64 won't
|
||
// overflow in practice, and working with signed numbers from the
|
||
// beginning simplifies the handling of deltas.) The map's key is the
|
||
// index of the bucket according to the used
|
||
// nativeHistogramSchema. Index 0 is for an upper bound of 1.
|
||
nativeHistogramBucketsPositive, nativeHistogramBucketsNegative sync.Map
|
||
}
|
||
|
||
// observe manages the parts of observe that only affects
|
||
// histogramCounts. doSparse is true if sparse buckets should be done,
|
||
// too.
|
||
func (hc *histogramCounts) observe(v float64, bucket int, doSparse bool) {
|
||
if bucket < len(hc.buckets) {
|
||
atomic.AddUint64(&hc.buckets[bucket], 1)
|
||
}
|
||
atomicAddFloat(&hc.sumBits, v)
|
||
if doSparse && !math.IsNaN(v) {
|
||
var (
|
||
key int
|
||
schema = atomic.LoadInt32(&hc.nativeHistogramSchema)
|
||
zeroThreshold = math.Float64frombits(atomic.LoadUint64(&hc.nativeHistogramZeroThresholdBits))
|
||
bucketCreated, isInf bool
|
||
)
|
||
if math.IsInf(v, 0) {
|
||
// Pretend v is MaxFloat64 but later increment key by one.
|
||
if math.IsInf(v, +1) {
|
||
v = math.MaxFloat64
|
||
} else {
|
||
v = -math.MaxFloat64
|
||
}
|
||
isInf = true
|
||
}
|
||
frac, exp := math.Frexp(math.Abs(v))
|
||
if schema > 0 {
|
||
bounds := nativeHistogramBounds[schema]
|
||
key = sort.SearchFloat64s(bounds, frac) + (exp-1)*len(bounds)
|
||
} else {
|
||
key = exp
|
||
if frac == 0.5 {
|
||
key--
|
||
}
|
||
offset := (1 << -schema) - 1
|
||
key = (key + offset) >> -schema
|
||
}
|
||
if isInf {
|
||
key++
|
||
}
|
||
switch {
|
||
case v > zeroThreshold:
|
||
bucketCreated = addToBucket(&hc.nativeHistogramBucketsPositive, key, 1)
|
||
case v < -zeroThreshold:
|
||
bucketCreated = addToBucket(&hc.nativeHistogramBucketsNegative, key, 1)
|
||
default:
|
||
atomic.AddUint64(&hc.nativeHistogramZeroBucket, 1)
|
||
}
|
||
if bucketCreated {
|
||
atomic.AddUint32(&hc.nativeHistogramBucketsNumber, 1)
|
||
}
|
||
}
|
||
// Increment count last as we take it as a signal that the observation
|
||
// is complete.
|
||
atomic.AddUint64(&hc.count, 1)
|
||
}
|
||
|
||
type histogram struct {
|
||
// countAndHotIdx enables lock-free writes with use of atomic updates.
|
||
// The most significant bit is the hot index [0 or 1] of the count field
|
||
// below. Observe calls update the hot one. All remaining bits count the
|
||
// number of Observe calls. Observe starts by incrementing this counter,
|
||
// and finish by incrementing the count field in the respective
|
||
// histogramCounts, as a marker for completion.
|
||
//
|
||
// Calls of the Write method (which are non-mutating reads from the
|
||
// perspective of the histogram) swap the hot–cold under the writeMtx
|
||
// lock. A cooldown is awaited (while locked) by comparing the number of
|
||
// observations with the initiation count. Once they match, then the
|
||
// last observation on the now cool one has completed. All cold fields must
|
||
// be merged into the new hot before releasing writeMtx.
|
||
//
|
||
// Fields with atomic access first! See alignment constraint:
|
||
// http://golang.org/pkg/sync/atomic/#pkg-note-BUG
|
||
countAndHotIdx uint64
|
||
|
||
selfCollector
|
||
desc *Desc
|
||
|
||
// Only used in the Write method and for sparse bucket management.
|
||
mtx sync.Mutex
|
||
|
||
// Two counts, one is "hot" for lock-free observations, the other is
|
||
// "cold" for writing out a dto.Metric. It has to be an array of
|
||
// pointers to guarantee 64bit alignment of the histogramCounts, see
|
||
// http://golang.org/pkg/sync/atomic/#pkg-note-BUG.
|
||
counts [2]*histogramCounts
|
||
|
||
upperBounds []float64
|
||
labelPairs []*dto.LabelPair
|
||
exemplars []atomic.Value // One more than buckets (to include +Inf), each a *dto.Exemplar.
|
||
nativeHistogramSchema int32 // The initial schema. Set to math.MinInt32 if no sparse buckets are used.
|
||
nativeHistogramZeroThreshold float64 // The initial zero threshold.
|
||
nativeHistogramMaxZeroThreshold float64
|
||
nativeHistogramMaxBuckets uint32
|
||
nativeHistogramMinResetDuration time.Duration
|
||
// lastResetTime is protected by mtx. It is also used as created timestamp.
|
||
lastResetTime time.Time
|
||
// resetScheduled is protected by mtx. It is true if a reset is
|
||
// scheduled for a later time (when nativeHistogramMinResetDuration has
|
||
// passed).
|
||
resetScheduled bool
|
||
nativeExemplars nativeExemplars
|
||
|
||
// now is for testing purposes, by default it's time.Now.
|
||
now func() time.Time
|
||
|
||
// afterFunc is for testing purposes, by default it's time.AfterFunc.
|
||
afterFunc func(time.Duration, func()) *time.Timer
|
||
}
|
||
|
||
func (h *histogram) Desc() *Desc {
|
||
return h.desc
|
||
}
|
||
|
||
func (h *histogram) Observe(v float64) {
|
||
h.observe(v, h.findBucket(v))
|
||
}
|
||
|
||
// ObserveWithExemplar should not be called in a high-frequency setting
|
||
// for a native histogram with configured exemplars. For this case,
|
||
// the implementation isn't lock-free and might suffer from lock contention.
|
||
func (h *histogram) ObserveWithExemplar(v float64, e Labels) {
|
||
i := h.findBucket(v)
|
||
h.observe(v, i)
|
||
h.updateExemplar(v, i, e)
|
||
}
|
||
|
||
func (h *histogram) Write(out *dto.Metric) error {
|
||
// For simplicity, we protect this whole method by a mutex. It is not in
|
||
// the hot path, i.e. Observe is called much more often than Write. The
|
||
// complication of making Write lock-free isn't worth it, if possible at
|
||
// all.
|
||
h.mtx.Lock()
|
||
defer h.mtx.Unlock()
|
||
|
||
// Adding 1<<63 switches the hot index (from 0 to 1 or from 1 to 0)
|
||
// without touching the count bits. See the struct comments for a full
|
||
// description of the algorithm.
|
||
n := atomic.AddUint64(&h.countAndHotIdx, 1<<63)
|
||
// count is contained unchanged in the lower 63 bits.
|
||
count := n & ((1 << 63) - 1)
|
||
// The most significant bit tells us which counts is hot. The complement
|
||
// is thus the cold one.
|
||
hotCounts := h.counts[n>>63]
|
||
coldCounts := h.counts[(^n)>>63]
|
||
|
||
waitForCooldown(count, coldCounts)
|
||
|
||
his := &dto.Histogram{
|
||
Bucket: make([]*dto.Bucket, len(h.upperBounds)),
|
||
SampleCount: proto.Uint64(count),
|
||
SampleSum: proto.Float64(math.Float64frombits(atomic.LoadUint64(&coldCounts.sumBits))),
|
||
CreatedTimestamp: timestamppb.New(h.lastResetTime),
|
||
}
|
||
out.Histogram = his
|
||
out.Label = h.labelPairs
|
||
|
||
var cumCount uint64
|
||
for i, upperBound := range h.upperBounds {
|
||
cumCount += atomic.LoadUint64(&coldCounts.buckets[i])
|
||
his.Bucket[i] = &dto.Bucket{
|
||
CumulativeCount: proto.Uint64(cumCount),
|
||
UpperBound: proto.Float64(upperBound),
|
||
}
|
||
if e := h.exemplars[i].Load(); e != nil {
|
||
his.Bucket[i].Exemplar = e.(*dto.Exemplar)
|
||
}
|
||
}
|
||
// If there is an exemplar for the +Inf bucket, we have to add that bucket explicitly.
|
||
if e := h.exemplars[len(h.upperBounds)].Load(); e != nil {
|
||
b := &dto.Bucket{
|
||
CumulativeCount: proto.Uint64(count),
|
||
UpperBound: proto.Float64(math.Inf(1)),
|
||
Exemplar: e.(*dto.Exemplar),
|
||
}
|
||
his.Bucket = append(his.Bucket, b)
|
||
}
|
||
if h.nativeHistogramSchema > math.MinInt32 {
|
||
his.ZeroThreshold = proto.Float64(math.Float64frombits(atomic.LoadUint64(&coldCounts.nativeHistogramZeroThresholdBits)))
|
||
his.Schema = proto.Int32(atomic.LoadInt32(&coldCounts.nativeHistogramSchema))
|
||
zeroBucket := atomic.LoadUint64(&coldCounts.nativeHistogramZeroBucket)
|
||
|
||
defer func() {
|
||
coldCounts.nativeHistogramBucketsPositive.Range(addAndReset(&hotCounts.nativeHistogramBucketsPositive, &hotCounts.nativeHistogramBucketsNumber))
|
||
coldCounts.nativeHistogramBucketsNegative.Range(addAndReset(&hotCounts.nativeHistogramBucketsNegative, &hotCounts.nativeHistogramBucketsNumber))
|
||
}()
|
||
|
||
his.ZeroCount = proto.Uint64(zeroBucket)
|
||
his.NegativeSpan, his.NegativeDelta = makeBuckets(&coldCounts.nativeHistogramBucketsNegative)
|
||
his.PositiveSpan, his.PositiveDelta = makeBuckets(&coldCounts.nativeHistogramBucketsPositive)
|
||
|
||
// Add a no-op span to a histogram without observations and with
|
||
// a zero threshold of zero. Otherwise, a native histogram would
|
||
// look like a classic histogram to scrapers.
|
||
if *his.ZeroThreshold == 0 && *his.ZeroCount == 0 && len(his.PositiveSpan) == 0 && len(his.NegativeSpan) == 0 {
|
||
his.PositiveSpan = []*dto.BucketSpan{{
|
||
Offset: proto.Int32(0),
|
||
Length: proto.Uint32(0),
|
||
}}
|
||
}
|
||
|
||
if h.nativeExemplars.isEnabled() {
|
||
h.nativeExemplars.Lock()
|
||
his.Exemplars = append(his.Exemplars, h.nativeExemplars.exemplars...)
|
||
h.nativeExemplars.Unlock()
|
||
}
|
||
|
||
}
|
||
addAndResetCounts(hotCounts, coldCounts)
|
||
return nil
|
||
}
|
||
|
||
// findBucket returns the index of the bucket for the provided value, or
|
||
// len(h.upperBounds) for the +Inf bucket.
|
||
func (h *histogram) findBucket(v float64) int {
|
||
n := len(h.upperBounds)
|
||
if n == 0 {
|
||
return 0
|
||
}
|
||
|
||
// Early exit: if v is less than or equal to the first upper bound, return 0
|
||
if v <= h.upperBounds[0] {
|
||
return 0
|
||
}
|
||
|
||
// Early exit: if v is greater than the last upper bound, return len(h.upperBounds)
|
||
if v > h.upperBounds[n-1] {
|
||
return n
|
||
}
|
||
|
||
// For small arrays, use simple linear search
|
||
// "magic number" 35 is result of tests on couple different (AWS and baremetal) servers
|
||
// see more details here: https://github.com/prometheus/client_golang/pull/1662
|
||
if n < 35 {
|
||
for i, bound := range h.upperBounds {
|
||
if v <= bound {
|
||
return i
|
||
}
|
||
}
|
||
// If v is greater than all upper bounds, return len(h.upperBounds)
|
||
return n
|
||
}
|
||
|
||
// For larger arrays, use stdlib's binary search
|
||
return sort.SearchFloat64s(h.upperBounds, v)
|
||
}
|
||
|
||
// observe is the implementation for Observe without the findBucket part.
|
||
func (h *histogram) observe(v float64, bucket int) {
|
||
// Do not add to sparse buckets for NaN observations.
|
||
doSparse := h.nativeHistogramSchema > math.MinInt32 && !math.IsNaN(v)
|
||
// We increment h.countAndHotIdx so that the counter in the lower
|
||
// 63 bits gets incremented. At the same time, we get the new value
|
||
// back, which we can use to find the currently-hot counts.
|
||
n := atomic.AddUint64(&h.countAndHotIdx, 1)
|
||
hotCounts := h.counts[n>>63]
|
||
hotCounts.observe(v, bucket, doSparse)
|
||
if doSparse {
|
||
h.limitBuckets(hotCounts, v, bucket)
|
||
}
|
||
}
|
||
|
||
// limitBuckets applies a strategy to limit the number of populated sparse
|
||
// buckets. It's generally best effort, and there are situations where the
|
||
// number can go higher (if even the lowest resolution isn't enough to reduce
|
||
// the number sufficiently, or if the provided counts aren't fully updated yet
|
||
// by a concurrently happening Write call).
|
||
func (h *histogram) limitBuckets(counts *histogramCounts, value float64, bucket int) {
|
||
if h.nativeHistogramMaxBuckets == 0 {
|
||
return // No limit configured.
|
||
}
|
||
if h.nativeHistogramMaxBuckets >= atomic.LoadUint32(&counts.nativeHistogramBucketsNumber) {
|
||
return // Bucket limit not exceeded yet.
|
||
}
|
||
|
||
h.mtx.Lock()
|
||
defer h.mtx.Unlock()
|
||
|
||
// The hot counts might have been swapped just before we acquired the
|
||
// lock. Re-fetch the hot counts first...
|
||
n := atomic.LoadUint64(&h.countAndHotIdx)
|
||
hotIdx := n >> 63
|
||
coldIdx := (^n) >> 63
|
||
hotCounts := h.counts[hotIdx]
|
||
coldCounts := h.counts[coldIdx]
|
||
// ...and then check again if we really have to reduce the bucket count.
|
||
if h.nativeHistogramMaxBuckets >= atomic.LoadUint32(&hotCounts.nativeHistogramBucketsNumber) {
|
||
return // Bucket limit not exceeded after all.
|
||
}
|
||
// Try the various strategies in order.
|
||
if h.maybeReset(hotCounts, coldCounts, coldIdx, value, bucket) {
|
||
return
|
||
}
|
||
// One of the other strategies will happen. To undo what they will do as
|
||
// soon as enough time has passed to satisfy
|
||
// h.nativeHistogramMinResetDuration, schedule a reset at the right time
|
||
// if we haven't done so already.
|
||
if h.nativeHistogramMinResetDuration > 0 && !h.resetScheduled {
|
||
h.resetScheduled = true
|
||
h.afterFunc(h.nativeHistogramMinResetDuration-h.now().Sub(h.lastResetTime), h.reset)
|
||
}
|
||
|
||
if h.maybeWidenZeroBucket(hotCounts, coldCounts) {
|
||
return
|
||
}
|
||
h.doubleBucketWidth(hotCounts, coldCounts)
|
||
}
|
||
|
||
// maybeReset resets the whole histogram if at least
|
||
// h.nativeHistogramMinResetDuration has been passed. It returns true if the
|
||
// histogram has been reset. The caller must have locked h.mtx.
|
||
func (h *histogram) maybeReset(
|
||
hot, cold *histogramCounts, coldIdx uint64, value float64, bucket int,
|
||
) bool {
|
||
// We are using the possibly mocked h.now() rather than
|
||
// time.Since(h.lastResetTime) to enable testing.
|
||
if h.nativeHistogramMinResetDuration == 0 || // No reset configured.
|
||
h.resetScheduled || // Do not interefere if a reset is already scheduled.
|
||
h.now().Sub(h.lastResetTime) < h.nativeHistogramMinResetDuration {
|
||
return false
|
||
}
|
||
// Completely reset coldCounts.
|
||
h.resetCounts(cold)
|
||
// Repeat the latest observation to not lose it completely.
|
||
cold.observe(value, bucket, true)
|
||
// Make coldCounts the new hot counts while resetting countAndHotIdx.
|
||
n := atomic.SwapUint64(&h.countAndHotIdx, (coldIdx<<63)+1)
|
||
count := n & ((1 << 63) - 1)
|
||
waitForCooldown(count, hot)
|
||
// Finally, reset the formerly hot counts, too.
|
||
h.resetCounts(hot)
|
||
h.lastResetTime = h.now()
|
||
return true
|
||
}
|
||
|
||
// reset resets the whole histogram. It locks h.mtx itself, i.e. it has to be
|
||
// called without having locked h.mtx.
|
||
func (h *histogram) reset() {
|
||
h.mtx.Lock()
|
||
defer h.mtx.Unlock()
|
||
|
||
n := atomic.LoadUint64(&h.countAndHotIdx)
|
||
hotIdx := n >> 63
|
||
coldIdx := (^n) >> 63
|
||
hot := h.counts[hotIdx]
|
||
cold := h.counts[coldIdx]
|
||
// Completely reset coldCounts.
|
||
h.resetCounts(cold)
|
||
// Make coldCounts the new hot counts while resetting countAndHotIdx.
|
||
n = atomic.SwapUint64(&h.countAndHotIdx, coldIdx<<63)
|
||
count := n & ((1 << 63) - 1)
|
||
waitForCooldown(count, hot)
|
||
// Finally, reset the formerly hot counts, too.
|
||
h.resetCounts(hot)
|
||
h.lastResetTime = h.now()
|
||
h.resetScheduled = false
|
||
}
|
||
|
||
// maybeWidenZeroBucket widens the zero bucket until it includes the existing
|
||
// buckets closest to the zero bucket (which could be two, if an equidistant
|
||
// negative and a positive bucket exists, but usually it's only one bucket to be
|
||
// merged into the new wider zero bucket). h.nativeHistogramMaxZeroThreshold
|
||
// limits how far the zero bucket can be extended, and if that's not enough to
|
||
// include an existing bucket, the method returns false. The caller must have
|
||
// locked h.mtx.
|
||
func (h *histogram) maybeWidenZeroBucket(hot, cold *histogramCounts) bool {
|
||
currentZeroThreshold := math.Float64frombits(atomic.LoadUint64(&hot.nativeHistogramZeroThresholdBits))
|
||
if currentZeroThreshold >= h.nativeHistogramMaxZeroThreshold {
|
||
return false
|
||
}
|
||
// Find the key of the bucket closest to zero.
|
||
smallestKey := findSmallestKey(&hot.nativeHistogramBucketsPositive)
|
||
smallestNegativeKey := findSmallestKey(&hot.nativeHistogramBucketsNegative)
|
||
if smallestNegativeKey < smallestKey {
|
||
smallestKey = smallestNegativeKey
|
||
}
|
||
if smallestKey == math.MaxInt32 {
|
||
return false
|
||
}
|
||
newZeroThreshold := getLe(smallestKey, atomic.LoadInt32(&hot.nativeHistogramSchema))
|
||
if newZeroThreshold > h.nativeHistogramMaxZeroThreshold {
|
||
return false // New threshold would exceed the max threshold.
|
||
}
|
||
atomic.StoreUint64(&cold.nativeHistogramZeroThresholdBits, math.Float64bits(newZeroThreshold))
|
||
// Remove applicable buckets.
|
||
if _, loaded := cold.nativeHistogramBucketsNegative.LoadAndDelete(smallestKey); loaded {
|
||
atomicDecUint32(&cold.nativeHistogramBucketsNumber)
|
||
}
|
||
if _, loaded := cold.nativeHistogramBucketsPositive.LoadAndDelete(smallestKey); loaded {
|
||
atomicDecUint32(&cold.nativeHistogramBucketsNumber)
|
||
}
|
||
// Make cold counts the new hot counts.
|
||
n := atomic.AddUint64(&h.countAndHotIdx, 1<<63)
|
||
count := n & ((1 << 63) - 1)
|
||
// Swap the pointer names to represent the new roles and make
|
||
// the rest less confusing.
|
||
hot, cold = cold, hot
|
||
waitForCooldown(count, cold)
|
||
// Add all the now cold counts to the new hot counts...
|
||
addAndResetCounts(hot, cold)
|
||
// ...adjust the new zero threshold in the cold counts, too...
|
||
atomic.StoreUint64(&cold.nativeHistogramZeroThresholdBits, math.Float64bits(newZeroThreshold))
|
||
// ...and then merge the newly deleted buckets into the wider zero
|
||
// bucket.
|
||
mergeAndDeleteOrAddAndReset := func(hotBuckets, coldBuckets *sync.Map) func(k, v interface{}) bool {
|
||
return func(k, v interface{}) bool {
|
||
key := k.(int)
|
||
bucket := v.(*int64)
|
||
if key == smallestKey {
|
||
// Merge into hot zero bucket...
|
||
atomic.AddUint64(&hot.nativeHistogramZeroBucket, uint64(atomic.LoadInt64(bucket)))
|
||
// ...and delete from cold counts.
|
||
coldBuckets.Delete(key)
|
||
atomicDecUint32(&cold.nativeHistogramBucketsNumber)
|
||
} else {
|
||
// Add to corresponding hot bucket...
|
||
if addToBucket(hotBuckets, key, atomic.LoadInt64(bucket)) {
|
||
atomic.AddUint32(&hot.nativeHistogramBucketsNumber, 1)
|
||
}
|
||
// ...and reset cold bucket.
|
||
atomic.StoreInt64(bucket, 0)
|
||
}
|
||
return true
|
||
}
|
||
}
|
||
|
||
cold.nativeHistogramBucketsPositive.Range(mergeAndDeleteOrAddAndReset(&hot.nativeHistogramBucketsPositive, &cold.nativeHistogramBucketsPositive))
|
||
cold.nativeHistogramBucketsNegative.Range(mergeAndDeleteOrAddAndReset(&hot.nativeHistogramBucketsNegative, &cold.nativeHistogramBucketsNegative))
|
||
return true
|
||
}
|
||
|
||
// doubleBucketWidth doubles the bucket width (by decrementing the schema
|
||
// number). Note that very sparse buckets could lead to a low reduction of the
|
||
// bucket count (or even no reduction at all). The method does nothing if the
|
||
// schema is already -4.
|
||
func (h *histogram) doubleBucketWidth(hot, cold *histogramCounts) {
|
||
coldSchema := atomic.LoadInt32(&cold.nativeHistogramSchema)
|
||
if coldSchema == -4 {
|
||
return // Already at lowest resolution.
|
||
}
|
||
coldSchema--
|
||
atomic.StoreInt32(&cold.nativeHistogramSchema, coldSchema)
|
||
// Play it simple and just delete all cold buckets.
|
||
atomic.StoreUint32(&cold.nativeHistogramBucketsNumber, 0)
|
||
deleteSyncMap(&cold.nativeHistogramBucketsNegative)
|
||
deleteSyncMap(&cold.nativeHistogramBucketsPositive)
|
||
// Make coldCounts the new hot counts.
|
||
n := atomic.AddUint64(&h.countAndHotIdx, 1<<63)
|
||
count := n & ((1 << 63) - 1)
|
||
// Swap the pointer names to represent the new roles and make
|
||
// the rest less confusing.
|
||
hot, cold = cold, hot
|
||
waitForCooldown(count, cold)
|
||
// Add all the now cold counts to the new hot counts...
|
||
addAndResetCounts(hot, cold)
|
||
// ...adjust the schema in the cold counts, too...
|
||
atomic.StoreInt32(&cold.nativeHistogramSchema, coldSchema)
|
||
// ...and then merge the cold buckets into the wider hot buckets.
|
||
merge := func(hotBuckets *sync.Map) func(k, v interface{}) bool {
|
||
return func(k, v interface{}) bool {
|
||
key := k.(int)
|
||
bucket := v.(*int64)
|
||
// Adjust key to match the bucket to merge into.
|
||
if key > 0 {
|
||
key++
|
||
}
|
||
key /= 2
|
||
// Add to corresponding hot bucket.
|
||
if addToBucket(hotBuckets, key, atomic.LoadInt64(bucket)) {
|
||
atomic.AddUint32(&hot.nativeHistogramBucketsNumber, 1)
|
||
}
|
||
return true
|
||
}
|
||
}
|
||
|
||
cold.nativeHistogramBucketsPositive.Range(merge(&hot.nativeHistogramBucketsPositive))
|
||
cold.nativeHistogramBucketsNegative.Range(merge(&hot.nativeHistogramBucketsNegative))
|
||
// Play it simple again and just delete all cold buckets.
|
||
atomic.StoreUint32(&cold.nativeHistogramBucketsNumber, 0)
|
||
deleteSyncMap(&cold.nativeHistogramBucketsNegative)
|
||
deleteSyncMap(&cold.nativeHistogramBucketsPositive)
|
||
}
|
||
|
||
func (h *histogram) resetCounts(counts *histogramCounts) {
|
||
atomic.StoreUint64(&counts.sumBits, 0)
|
||
atomic.StoreUint64(&counts.count, 0)
|
||
atomic.StoreUint64(&counts.nativeHistogramZeroBucket, 0)
|
||
atomic.StoreUint64(&counts.nativeHistogramZeroThresholdBits, math.Float64bits(h.nativeHistogramZeroThreshold))
|
||
atomic.StoreInt32(&counts.nativeHistogramSchema, h.nativeHistogramSchema)
|
||
atomic.StoreUint32(&counts.nativeHistogramBucketsNumber, 0)
|
||
for i := range h.upperBounds {
|
||
atomic.StoreUint64(&counts.buckets[i], 0)
|
||
}
|
||
deleteSyncMap(&counts.nativeHistogramBucketsNegative)
|
||
deleteSyncMap(&counts.nativeHistogramBucketsPositive)
|
||
}
|
||
|
||
// updateExemplar replaces the exemplar for the provided classic bucket.
|
||
// With empty labels, it's a no-op. It panics if any of the labels is invalid.
|
||
// If histogram is native, the exemplar will be cached into nativeExemplars,
|
||
// which has a limit, and will remove one exemplar when limit is reached.
|
||
func (h *histogram) updateExemplar(v float64, bucket int, l Labels) {
|
||
if l == nil {
|
||
return
|
||
}
|
||
e, err := newExemplar(v, h.now(), l)
|
||
if err != nil {
|
||
panic(err)
|
||
}
|
||
h.exemplars[bucket].Store(e)
|
||
doSparse := h.nativeHistogramSchema > math.MinInt32 && !math.IsNaN(v)
|
||
if doSparse {
|
||
h.nativeExemplars.addExemplar(e)
|
||
}
|
||
}
|
||
|
||
// HistogramVec is a Collector that bundles a set of Histograms that all share the
|
||
// same Desc, but have different values for their variable labels. This is used
|
||
// if you want to count the same thing partitioned by various dimensions
|
||
// (e.g. HTTP request latencies, partitioned by status code and method). Create
|
||
// instances with NewHistogramVec.
|
||
type HistogramVec struct {
|
||
*MetricVec
|
||
}
|
||
|
||
// NewHistogramVec creates a new HistogramVec based on the provided HistogramOpts and
|
||
// partitioned by the given label names.
|
||
func NewHistogramVec(opts HistogramOpts, labelNames []string) *HistogramVec {
|
||
return V2.NewHistogramVec(HistogramVecOpts{
|
||
HistogramOpts: opts,
|
||
VariableLabels: UnconstrainedLabels(labelNames),
|
||
})
|
||
}
|
||
|
||
// NewHistogramVec creates a new HistogramVec based on the provided HistogramVecOpts.
|
||
func (v2) NewHistogramVec(opts HistogramVecOpts) *HistogramVec {
|
||
desc := V2.NewDesc(
|
||
BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),
|
||
opts.Help,
|
||
opts.VariableLabels,
|
||
opts.ConstLabels,
|
||
)
|
||
return &HistogramVec{
|
||
MetricVec: NewMetricVec(desc, func(lvs ...string) Metric {
|
||
return newHistogram(desc, opts.HistogramOpts, lvs...)
|
||
}),
|
||
}
|
||
}
|
||
|
||
// GetMetricWithLabelValues returns the Histogram for the given slice of label
|
||
// values (same order as the variable labels in Desc). If that combination of
|
||
// label values is accessed for the first time, a new Histogram is created.
|
||
//
|
||
// It is possible to call this method without using the returned Histogram to only
|
||
// create the new Histogram but leave it at its starting value, a Histogram without
|
||
// any observations.
|
||
//
|
||
// Keeping the Histogram for later use is possible (and should be considered if
|
||
// performance is critical), but keep in mind that Reset, DeleteLabelValues and
|
||
// Delete can be used to delete the Histogram from the HistogramVec. In that case, the
|
||
// Histogram will still exist, but it will not be exported anymore, even if a
|
||
// Histogram with the same label values is created later. See also the CounterVec
|
||
// example.
|
||
//
|
||
// An error is returned if the number of label values is not the same as the
|
||
// number of variable labels in Desc (minus any curried labels).
|
||
//
|
||
// Note that for more than one label value, this method is prone to mistakes
|
||
// caused by an incorrect order of arguments. Consider GetMetricWith(Labels) as
|
||
// an alternative to avoid that type of mistake. For higher label numbers, the
|
||
// latter has a much more readable (albeit more verbose) syntax, but it comes
|
||
// with a performance overhead (for creating and processing the Labels map).
|
||
// See also the GaugeVec example.
|
||
func (v *HistogramVec) GetMetricWithLabelValues(lvs ...string) (Observer, error) {
|
||
metric, err := v.MetricVec.GetMetricWithLabelValues(lvs...)
|
||
if metric != nil {
|
||
return metric.(Observer), err
|
||
}
|
||
return nil, err
|
||
}
|
||
|
||
// GetMetricWith returns the Histogram for the given Labels map (the label names
|
||
// must match those of the variable labels in Desc). If that label map is
|
||
// accessed for the first time, a new Histogram is created. Implications of
|
||
// creating a Histogram without using it and keeping the Histogram for later use
|
||
// are the same as for GetMetricWithLabelValues.
|
||
//
|
||
// An error is returned if the number and names of the Labels are inconsistent
|
||
// with those of the variable labels in Desc (minus any curried labels).
|
||
//
|
||
// This method is used for the same purpose as
|
||
// GetMetricWithLabelValues(...string). See there for pros and cons of the two
|
||
// methods.
|
||
func (v *HistogramVec) GetMetricWith(labels Labels) (Observer, error) {
|
||
metric, err := v.MetricVec.GetMetricWith(labels)
|
||
if metric != nil {
|
||
return metric.(Observer), err
|
||
}
|
||
return nil, err
|
||
}
|
||
|
||
// WithLabelValues works as GetMetricWithLabelValues, but panics where
|
||
// GetMetricWithLabelValues would have returned an error. Not returning an
|
||
// error allows shortcuts like
|
||
//
|
||
// myVec.WithLabelValues("404", "GET").Observe(42.21)
|
||
func (v *HistogramVec) WithLabelValues(lvs ...string) Observer {
|
||
h, err := v.GetMetricWithLabelValues(lvs...)
|
||
if err != nil {
|
||
panic(err)
|
||
}
|
||
return h
|
||
}
|
||
|
||
// With works as GetMetricWith but panics where GetMetricWithLabels would have
|
||
// returned an error. Not returning an error allows shortcuts like
|
||
//
|
||
// myVec.With(prometheus.Labels{"code": "404", "method": "GET"}).Observe(42.21)
|
||
func (v *HistogramVec) With(labels Labels) Observer {
|
||
h, err := v.GetMetricWith(labels)
|
||
if err != nil {
|
||
panic(err)
|
||
}
|
||
return h
|
||
}
|
||
|
||
// CurryWith returns a vector curried with the provided labels, i.e. the
|
||
// returned vector has those labels pre-set for all labeled operations performed
|
||
// on it. The cardinality of the curried vector is reduced accordingly. The
|
||
// order of the remaining labels stays the same (just with the curried labels
|
||
// taken out of the sequence – which is relevant for the
|
||
// (GetMetric)WithLabelValues methods). It is possible to curry a curried
|
||
// vector, but only with labels not yet used for currying before.
|
||
//
|
||
// The metrics contained in the HistogramVec are shared between the curried and
|
||
// uncurried vectors. They are just accessed differently. Curried and uncurried
|
||
// vectors behave identically in terms of collection. Only one must be
|
||
// registered with a given registry (usually the uncurried version). The Reset
|
||
// method deletes all metrics, even if called on a curried vector.
|
||
func (v *HistogramVec) CurryWith(labels Labels) (ObserverVec, error) {
|
||
vec, err := v.MetricVec.CurryWith(labels)
|
||
if vec != nil {
|
||
return &HistogramVec{vec}, err
|
||
}
|
||
return nil, err
|
||
}
|
||
|
||
// MustCurryWith works as CurryWith but panics where CurryWith would have
|
||
// returned an error.
|
||
func (v *HistogramVec) MustCurryWith(labels Labels) ObserverVec {
|
||
vec, err := v.CurryWith(labels)
|
||
if err != nil {
|
||
panic(err)
|
||
}
|
||
return vec
|
||
}
|
||
|
||
type constHistogram struct {
|
||
desc *Desc
|
||
count uint64
|
||
sum float64
|
||
buckets map[float64]uint64
|
||
labelPairs []*dto.LabelPair
|
||
createdTs *timestamppb.Timestamp
|
||
}
|
||
|
||
func (h *constHistogram) Desc() *Desc {
|
||
return h.desc
|
||
}
|
||
|
||
func (h *constHistogram) Write(out *dto.Metric) error {
|
||
his := &dto.Histogram{
|
||
CreatedTimestamp: h.createdTs,
|
||
}
|
||
|
||
buckets := make([]*dto.Bucket, 0, len(h.buckets))
|
||
|
||
his.SampleCount = proto.Uint64(h.count)
|
||
his.SampleSum = proto.Float64(h.sum)
|
||
for upperBound, count := range h.buckets {
|
||
buckets = append(buckets, &dto.Bucket{
|
||
CumulativeCount: proto.Uint64(count),
|
||
UpperBound: proto.Float64(upperBound),
|
||
})
|
||
}
|
||
|
||
if len(buckets) > 0 {
|
||
sort.Sort(buckSort(buckets))
|
||
}
|
||
his.Bucket = buckets
|
||
|
||
out.Histogram = his
|
||
out.Label = h.labelPairs
|
||
|
||
return nil
|
||
}
|
||
|
||
// NewConstHistogram returns a metric representing a Prometheus histogram with
|
||
// fixed values for the count, sum, and bucket counts. As those parameters
|
||
// cannot be changed, the returned value does not implement the Histogram
|
||
// interface (but only the Metric interface). Users of this package will not
|
||
// have much use for it in regular operations. However, when implementing custom
|
||
// Collectors, it is useful as a throw-away metric that is generated on the fly
|
||
// to send it to Prometheus in the Collect method.
|
||
//
|
||
// buckets is a map of upper bounds to cumulative counts, excluding the +Inf
|
||
// bucket. The +Inf bucket is implicit, and its value is equal to the provided count.
|
||
//
|
||
// NewConstHistogram returns an error if the length of labelValues is not
|
||
// consistent with the variable labels in Desc or if Desc is invalid.
|
||
func NewConstHistogram(
|
||
desc *Desc,
|
||
count uint64,
|
||
sum float64,
|
||
buckets map[float64]uint64,
|
||
labelValues ...string,
|
||
) (Metric, error) {
|
||
if desc.err != nil {
|
||
return nil, desc.err
|
||
}
|
||
if err := validateLabelValues(labelValues, len(desc.variableLabels.names)); err != nil {
|
||
return nil, err
|
||
}
|
||
return &constHistogram{
|
||
desc: desc,
|
||
count: count,
|
||
sum: sum,
|
||
buckets: buckets,
|
||
labelPairs: MakeLabelPairs(desc, labelValues),
|
||
}, nil
|
||
}
|
||
|
||
// MustNewConstHistogram is a version of NewConstHistogram that panics where
|
||
// NewConstHistogram would have returned an error.
|
||
func MustNewConstHistogram(
|
||
desc *Desc,
|
||
count uint64,
|
||
sum float64,
|
||
buckets map[float64]uint64,
|
||
labelValues ...string,
|
||
) Metric {
|
||
m, err := NewConstHistogram(desc, count, sum, buckets, labelValues...)
|
||
if err != nil {
|
||
panic(err)
|
||
}
|
||
return m
|
||
}
|
||
|
||
// NewConstHistogramWithCreatedTimestamp does the same thing as NewConstHistogram but sets the created timestamp.
|
||
func NewConstHistogramWithCreatedTimestamp(
|
||
desc *Desc,
|
||
count uint64,
|
||
sum float64,
|
||
buckets map[float64]uint64,
|
||
ct time.Time,
|
||
labelValues ...string,
|
||
) (Metric, error) {
|
||
if desc.err != nil {
|
||
return nil, desc.err
|
||
}
|
||
if err := validateLabelValues(labelValues, len(desc.variableLabels.names)); err != nil {
|
||
return nil, err
|
||
}
|
||
return &constHistogram{
|
||
desc: desc,
|
||
count: count,
|
||
sum: sum,
|
||
buckets: buckets,
|
||
labelPairs: MakeLabelPairs(desc, labelValues),
|
||
createdTs: timestamppb.New(ct),
|
||
}, nil
|
||
}
|
||
|
||
// MustNewConstHistogramWithCreatedTimestamp is a version of NewConstHistogramWithCreatedTimestamp that panics where
|
||
// NewConstHistogramWithCreatedTimestamp would have returned an error.
|
||
func MustNewConstHistogramWithCreatedTimestamp(
|
||
desc *Desc,
|
||
count uint64,
|
||
sum float64,
|
||
buckets map[float64]uint64,
|
||
ct time.Time,
|
||
labelValues ...string,
|
||
) Metric {
|
||
m, err := NewConstHistogramWithCreatedTimestamp(desc, count, sum, buckets, ct, labelValues...)
|
||
if err != nil {
|
||
panic(err)
|
||
}
|
||
return m
|
||
}
|
||
|
||
type buckSort []*dto.Bucket
|
||
|
||
func (s buckSort) Len() int {
|
||
return len(s)
|
||
}
|
||
|
||
func (s buckSort) Swap(i, j int) {
|
||
s[i], s[j] = s[j], s[i]
|
||
}
|
||
|
||
func (s buckSort) Less(i, j int) bool {
|
||
return s[i].GetUpperBound() < s[j].GetUpperBound()
|
||
}
|
||
|
||
// pickSchema returns the largest number n between -4 and 8 such that
|
||
// 2^(2^-n) is less or equal the provided bucketFactor.
|
||
//
|
||
// Special cases:
|
||
// - bucketFactor <= 1: panics.
|
||
// - bucketFactor < 2^(2^-8) (but > 1): still returns 8.
|
||
func pickSchema(bucketFactor float64) int32 {
|
||
if bucketFactor <= 1 {
|
||
panic(fmt.Errorf("bucketFactor %f is <=1", bucketFactor))
|
||
}
|
||
floor := math.Floor(math.Log2(math.Log2(bucketFactor)))
|
||
switch {
|
||
case floor <= -8:
|
||
return 8
|
||
case floor >= 4:
|
||
return -4
|
||
default:
|
||
return -int32(floor)
|
||
}
|
||
}
|
||
|
||
func makeBuckets(buckets *sync.Map) ([]*dto.BucketSpan, []int64) {
|
||
var ii []int
|
||
buckets.Range(func(k, v interface{}) bool {
|
||
ii = append(ii, k.(int))
|
||
return true
|
||
})
|
||
sort.Ints(ii)
|
||
|
||
if len(ii) == 0 {
|
||
return nil, nil
|
||
}
|
||
|
||
var (
|
||
spans []*dto.BucketSpan
|
||
deltas []int64
|
||
prevCount int64
|
||
nextI int
|
||
)
|
||
|
||
appendDelta := func(count int64) {
|
||
*spans[len(spans)-1].Length++
|
||
deltas = append(deltas, count-prevCount)
|
||
prevCount = count
|
||
}
|
||
|
||
for n, i := range ii {
|
||
v, _ := buckets.Load(i)
|
||
count := atomic.LoadInt64(v.(*int64))
|
||
// Multiple spans with only small gaps in between are probably
|
||
// encoded more efficiently as one larger span with a few empty
|
||
// buckets. Needs some research to find the sweet spot. For now,
|
||
// we assume that gaps of one or two buckets should not create
|
||
// a new span.
|
||
iDelta := int32(i - nextI)
|
||
if n == 0 || iDelta > 2 {
|
||
// We have to create a new span, either because we are
|
||
// at the very beginning, or because we have found a gap
|
||
// of more than two buckets.
|
||
spans = append(spans, &dto.BucketSpan{
|
||
Offset: proto.Int32(iDelta),
|
||
Length: proto.Uint32(0),
|
||
})
|
||
} else {
|
||
// We have found a small gap (or no gap at all).
|
||
// Insert empty buckets as needed.
|
||
for j := int32(0); j < iDelta; j++ {
|
||
appendDelta(0)
|
||
}
|
||
}
|
||
appendDelta(count)
|
||
nextI = i + 1
|
||
}
|
||
return spans, deltas
|
||
}
|
||
|
||
// addToBucket increments the sparse bucket at key by the provided amount. It
|
||
// returns true if a new sparse bucket had to be created for that.
|
||
func addToBucket(buckets *sync.Map, key int, increment int64) bool {
|
||
if existingBucket, ok := buckets.Load(key); ok {
|
||
// Fast path without allocation.
|
||
atomic.AddInt64(existingBucket.(*int64), increment)
|
||
return false
|
||
}
|
||
// Bucket doesn't exist yet. Slow path allocating new counter.
|
||
newBucket := increment // TODO(beorn7): Check if this is sufficient to not let increment escape.
|
||
if actualBucket, loaded := buckets.LoadOrStore(key, &newBucket); loaded {
|
||
// The bucket was created concurrently in another goroutine.
|
||
// Have to increment after all.
|
||
atomic.AddInt64(actualBucket.(*int64), increment)
|
||
return false
|
||
}
|
||
return true
|
||
}
|
||
|
||
// addAndReset returns a function to be used with sync.Map.Range of spare
|
||
// buckets in coldCounts. It increments the buckets in the provided hotBuckets
|
||
// according to the buckets ranged through. It then resets all buckets ranged
|
||
// through to 0 (but leaves them in place so that they don't need to get
|
||
// recreated on the next scrape).
|
||
func addAndReset(hotBuckets *sync.Map, bucketNumber *uint32) func(k, v interface{}) bool {
|
||
return func(k, v interface{}) bool {
|
||
bucket := v.(*int64)
|
||
if addToBucket(hotBuckets, k.(int), atomic.LoadInt64(bucket)) {
|
||
atomic.AddUint32(bucketNumber, 1)
|
||
}
|
||
atomic.StoreInt64(bucket, 0)
|
||
return true
|
||
}
|
||
}
|
||
|
||
func deleteSyncMap(m *sync.Map) {
|
||
m.Range(func(k, v interface{}) bool {
|
||
m.Delete(k)
|
||
return true
|
||
})
|
||
}
|
||
|
||
func findSmallestKey(m *sync.Map) int {
|
||
result := math.MaxInt32
|
||
m.Range(func(k, v interface{}) bool {
|
||
key := k.(int)
|
||
if key < result {
|
||
result = key
|
||
}
|
||
return true
|
||
})
|
||
return result
|
||
}
|
||
|
||
func getLe(key int, schema int32) float64 {
|
||
// Here a bit of context about the behavior for the last bucket counting
|
||
// regular numbers (called simply "last bucket" below) and the bucket
|
||
// counting observations of ±Inf (called "inf bucket" below, with a key
|
||
// one higher than that of the "last bucket"):
|
||
//
|
||
// If we apply the usual formula to the last bucket, its upper bound
|
||
// would be calculated as +Inf. The reason is that the max possible
|
||
// regular float64 number (math.MaxFloat64) doesn't coincide with one of
|
||
// the calculated bucket boundaries. So the calculated boundary has to
|
||
// be larger than math.MaxFloat64, and the only float64 larger than
|
||
// math.MaxFloat64 is +Inf. However, we want to count actual
|
||
// observations of ±Inf in the inf bucket. Therefore, we have to treat
|
||
// the upper bound of the last bucket specially and set it to
|
||
// math.MaxFloat64. (The upper bound of the inf bucket, with its key
|
||
// being one higher than that of the last bucket, naturally comes out as
|
||
// +Inf by the usual formula. So that's fine.)
|
||
//
|
||
// math.MaxFloat64 has a frac of 0.9999999999999999 and an exp of
|
||
// 1024. If there were a float64 number following math.MaxFloat64, it
|
||
// would have a frac of 1.0 and an exp of 1024, or equivalently a frac
|
||
// of 0.5 and an exp of 1025. However, since frac must be smaller than
|
||
// 1, and exp must be smaller than 1025, either representation overflows
|
||
// a float64. (Which, in turn, is the reason that math.MaxFloat64 is the
|
||
// largest possible float64. Q.E.D.) However, the formula for
|
||
// calculating the upper bound from the idx and schema of the last
|
||
// bucket results in precisely that. It is either frac=1.0 & exp=1024
|
||
// (for schema < 0) or frac=0.5 & exp=1025 (for schema >=0). (This is,
|
||
// by the way, a power of two where the exponent itself is a power of
|
||
// two, 2¹⁰ in fact, which coinicides with a bucket boundary in all
|
||
// schemas.) So these are the special cases we have to catch below.
|
||
if schema < 0 {
|
||
exp := key << -schema
|
||
if exp == 1024 {
|
||
// This is the last bucket before the overflow bucket
|
||
// (for ±Inf observations). Return math.MaxFloat64 as
|
||
// explained above.
|
||
return math.MaxFloat64
|
||
}
|
||
return math.Ldexp(1, exp)
|
||
}
|
||
|
||
fracIdx := key & ((1 << schema) - 1)
|
||
frac := nativeHistogramBounds[schema][fracIdx]
|
||
exp := (key >> schema) + 1
|
||
if frac == 0.5 && exp == 1025 {
|
||
// This is the last bucket before the overflow bucket (for ±Inf
|
||
// observations). Return math.MaxFloat64 as explained above.
|
||
return math.MaxFloat64
|
||
}
|
||
return math.Ldexp(frac, exp)
|
||
}
|
||
|
||
// waitForCooldown returns after the count field in the provided histogramCounts
|
||
// has reached the provided count value.
|
||
func waitForCooldown(count uint64, counts *histogramCounts) {
|
||
for count != atomic.LoadUint64(&counts.count) {
|
||
runtime.Gosched() // Let observations get work done.
|
||
}
|
||
}
|
||
|
||
// atomicAddFloat adds the provided float atomically to another float
|
||
// represented by the bit pattern the bits pointer is pointing to.
|
||
func atomicAddFloat(bits *uint64, v float64) {
|
||
atomicUpdateFloat(bits, func(oldVal float64) float64 {
|
||
return oldVal + v
|
||
})
|
||
}
|
||
|
||
// atomicDecUint32 atomically decrements the uint32 p points to. See
|
||
// https://pkg.go.dev/sync/atomic#AddUint32 to understand how this is done.
|
||
func atomicDecUint32(p *uint32) {
|
||
atomic.AddUint32(p, ^uint32(0))
|
||
}
|
||
|
||
// addAndResetCounts adds certain fields (count, sum, conventional buckets, zero
|
||
// bucket) from the cold counts to the corresponding fields in the hot
|
||
// counts. Those fields are then reset to 0 in the cold counts.
|
||
func addAndResetCounts(hot, cold *histogramCounts) {
|
||
atomic.AddUint64(&hot.count, atomic.LoadUint64(&cold.count))
|
||
atomic.StoreUint64(&cold.count, 0)
|
||
coldSum := math.Float64frombits(atomic.LoadUint64(&cold.sumBits))
|
||
atomicAddFloat(&hot.sumBits, coldSum)
|
||
atomic.StoreUint64(&cold.sumBits, 0)
|
||
for i := range hot.buckets {
|
||
atomic.AddUint64(&hot.buckets[i], atomic.LoadUint64(&cold.buckets[i]))
|
||
atomic.StoreUint64(&cold.buckets[i], 0)
|
||
}
|
||
atomic.AddUint64(&hot.nativeHistogramZeroBucket, atomic.LoadUint64(&cold.nativeHistogramZeroBucket))
|
||
atomic.StoreUint64(&cold.nativeHistogramZeroBucket, 0)
|
||
}
|
||
|
||
type nativeExemplars struct {
|
||
sync.Mutex
|
||
|
||
// Time-to-live for exemplars, it is set to -1 if exemplars are disabled, that is NativeHistogramMaxExemplars is below 0.
|
||
// The ttl is used on insertion to remove an exemplar that is older than ttl, if present.
|
||
ttl time.Duration
|
||
|
||
exemplars []*dto.Exemplar
|
||
}
|
||
|
||
func (n *nativeExemplars) isEnabled() bool {
|
||
return n.ttl != -1
|
||
}
|
||
|
||
func makeNativeExemplars(ttl time.Duration, maxCount int) nativeExemplars {
|
||
if ttl == 0 {
|
||
ttl = 5 * time.Minute
|
||
}
|
||
|
||
if maxCount == 0 {
|
||
maxCount = 10
|
||
}
|
||
|
||
if maxCount < 0 {
|
||
maxCount = 0
|
||
ttl = -1
|
||
}
|
||
|
||
return nativeExemplars{
|
||
ttl: ttl,
|
||
exemplars: make([]*dto.Exemplar, 0, maxCount),
|
||
}
|
||
}
|
||
|
||
func (n *nativeExemplars) addExemplar(e *dto.Exemplar) {
|
||
if !n.isEnabled() {
|
||
return
|
||
}
|
||
|
||
n.Lock()
|
||
defer n.Unlock()
|
||
|
||
// When the number of exemplars has not yet exceeded or
|
||
// is equal to cap(n.exemplars), then
|
||
// insert the new exemplar directly.
|
||
if len(n.exemplars) < cap(n.exemplars) {
|
||
var nIdx int
|
||
for nIdx = 0; nIdx < len(n.exemplars); nIdx++ {
|
||
if *e.Value < *n.exemplars[nIdx].Value {
|
||
break
|
||
}
|
||
}
|
||
n.exemplars = append(n.exemplars[:nIdx], append([]*dto.Exemplar{e}, n.exemplars[nIdx:]...)...)
|
||
return
|
||
}
|
||
|
||
if len(n.exemplars) == 1 {
|
||
// When the number of exemplars is 1, then
|
||
// replace the existing exemplar with the new exemplar.
|
||
n.exemplars[0] = e
|
||
return
|
||
}
|
||
// From this point on, the number of exemplars is greater than 1.
|
||
|
||
// When the number of exemplars exceeds the limit, remove one exemplar.
|
||
var (
|
||
ot = time.Time{} // Oldest timestamp seen. Initial value doesn't matter as we replace it due to otIdx == -1 in the loop.
|
||
otIdx = -1 // Index of the exemplar with the oldest timestamp.
|
||
|
||
md = -1.0 // Logarithm of the delta of the closest pair of exemplars.
|
||
|
||
// The insertion point of the new exemplar in the exemplars slice after insertion.
|
||
// This is calculated purely based on the order of the exemplars by value.
|
||
// nIdx == len(n.exemplars) means the new exemplar is to be inserted after the end.
|
||
nIdx = -1
|
||
|
||
// rIdx is ultimately the index for the exemplar that we are replacing with the new exemplar.
|
||
// The aim is to keep a good spread of exemplars by value and not let them bunch up too much.
|
||
// It is calculated in 3 steps:
|
||
// 1. First we set rIdx to the index of the older exemplar within the closest pair by value.
|
||
// That is the following will be true (on log scale):
|
||
// either the exemplar pair on index (rIdx-1, rIdx) or (rIdx, rIdx+1) will have
|
||
// the closest values to each other from all pairs.
|
||
// For example, suppose the values are distributed like this:
|
||
// |-----------x-------------x----------------x----x-----|
|
||
// ^--rIdx as this is older.
|
||
// Or like this:
|
||
// |-----------x-------------x----------------x----x-----|
|
||
// ^--rIdx as this is older.
|
||
// 2. If there is an exemplar that expired, then we simple reset rIdx to that index.
|
||
// 3. We check if by inserting the new exemplar we would create a closer pair at
|
||
// (nIdx-1, nIdx) or (nIdx, nIdx+1) and set rIdx to nIdx-1 or nIdx accordingly to
|
||
// keep the spread of exemplars by value; otherwise we keep rIdx as it is.
|
||
rIdx = -1
|
||
cLog float64 // Logarithm of the current exemplar.
|
||
pLog float64 // Logarithm of the previous exemplar.
|
||
)
|
||
|
||
for i, exemplar := range n.exemplars {
|
||
// Find the exemplar with the oldest timestamp.
|
||
if otIdx == -1 || exemplar.Timestamp.AsTime().Before(ot) {
|
||
ot = exemplar.Timestamp.AsTime()
|
||
otIdx = i
|
||
}
|
||
|
||
// Find the index at which to insert new the exemplar.
|
||
if nIdx == -1 && *e.Value <= *exemplar.Value {
|
||
nIdx = i
|
||
}
|
||
|
||
// Find the two closest exemplars and pick the one the with older timestamp.
|
||
pLog = cLog
|
||
cLog = math.Log(exemplar.GetValue())
|
||
if i == 0 {
|
||
continue
|
||
}
|
||
diff := math.Abs(cLog - pLog)
|
||
if md == -1 || diff < md {
|
||
// The closest exemplar pair is at index: i-1, i.
|
||
// Choose the exemplar with the older timestamp for replacement.
|
||
md = diff
|
||
if n.exemplars[i].Timestamp.AsTime().Before(n.exemplars[i-1].Timestamp.AsTime()) {
|
||
rIdx = i
|
||
} else {
|
||
rIdx = i - 1
|
||
}
|
||
}
|
||
|
||
}
|
||
|
||
// If all existing exemplar are smaller than new exemplar,
|
||
// then the exemplar should be inserted at the end.
|
||
if nIdx == -1 {
|
||
nIdx = len(n.exemplars)
|
||
}
|
||
// Here, we have the following relationships:
|
||
// n.exemplars[nIdx-1].Value < e.Value (if nIdx > 0)
|
||
// e.Value <= n.exemplars[nIdx].Value (if nIdx < len(n.exemplars))
|
||
|
||
if otIdx != -1 && e.Timestamp.AsTime().Sub(ot) > n.ttl {
|
||
// If the oldest exemplar has expired, then replace it with the new exemplar.
|
||
rIdx = otIdx
|
||
} else {
|
||
// In the previous for loop, when calculating the closest pair of exemplars,
|
||
// we did not take into account the newly inserted exemplar.
|
||
// So we need to calculate with the newly inserted exemplar again.
|
||
elog := math.Log(e.GetValue())
|
||
if nIdx > 0 {
|
||
diff := math.Abs(elog - math.Log(n.exemplars[nIdx-1].GetValue()))
|
||
if diff < md {
|
||
// The value we are about to insert is closer to the previous exemplar at the insertion point than what we calculated before in rIdx.
|
||
// v--rIdx
|
||
// |-----------x-n-----------x----------------x----x-----|
|
||
// nIdx-1--^ ^--new exemplar value
|
||
// Do not make the spread worse, replace nIdx-1 and not rIdx.
|
||
md = diff
|
||
rIdx = nIdx - 1
|
||
}
|
||
}
|
||
if nIdx < len(n.exemplars) {
|
||
diff := math.Abs(math.Log(n.exemplars[nIdx].GetValue()) - elog)
|
||
if diff < md {
|
||
// The value we are about to insert is closer to the next exemplar at the insertion point than what we calculated before in rIdx.
|
||
// v--rIdx
|
||
// |-----------x-----------n-x----------------x----x-----|
|
||
// new exemplar value--^ ^--nIdx
|
||
// Do not make the spread worse, replace nIdx-1 and not rIdx.
|
||
rIdx = nIdx
|
||
}
|
||
}
|
||
}
|
||
|
||
// Adjust the slice according to rIdx and nIdx.
|
||
switch {
|
||
case rIdx == nIdx:
|
||
n.exemplars[nIdx] = e
|
||
case rIdx < nIdx:
|
||
n.exemplars = append(n.exemplars[:rIdx], append(n.exemplars[rIdx+1:nIdx], append([]*dto.Exemplar{e}, n.exemplars[nIdx:]...)...)...)
|
||
case rIdx > nIdx:
|
||
n.exemplars = append(n.exemplars[:nIdx], append([]*dto.Exemplar{e}, append(n.exemplars[nIdx:rIdx], n.exemplars[rIdx+1:]...)...)...)
|
||
}
|
||
}
|