// Copyright 2015 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // A simple example exposing fictional RPC latencies with different types of // random distributions (uniform, normal, and exponential) as Prometheus // metrics. package main import ( "flag" "fmt" "log" "math" "math/rand" "net/http" "time" "github.com/prometheus/client_golang/prometheus" "github.com/prometheus/client_golang/prometheus/collectors" "github.com/prometheus/client_golang/prometheus/promhttp" ) type metrics struct { rpcDurations *prometheus.SummaryVec rpcDurationsHistogram prometheus.Histogram } func NewMetrics(reg prometheus.Registerer, normMean, normDomain float64) *metrics { m := &metrics{ // Create a summary to track fictional inter service RPC latencies for three // distinct services with different latency distributions. These services are // differentiated via a "service" label. rpcDurations: prometheus.NewSummaryVec( prometheus.SummaryOpts{ Name: "rpc_durations_seconds", Help: "RPC latency distributions.", Objectives: map[float64]float64{0.5: 0.05, 0.9: 0.01, 0.99: 0.001}, }, []string{"service"}, ), // The same as above, but now as a histogram, and only for the // normal distribution. The histogram features both conventional // buckets as well as sparse buckets, the latter needed for the // experimental native histograms (ingested by a Prometheus // server v2.40 with the corresponding feature flag // enabled). The conventional buckets are targeted to the // parameters of the normal distribution, with 20 buckets // centered on the mean, each half-sigma wide. The sparse // buckets are always centered on zero, with a growth factor of // one bucket to the next of (at most) 1.1. (The precise factor // is 2^2^-3 = 1.0905077...) rpcDurationsHistogram: prometheus.NewHistogram(prometheus.HistogramOpts{ Name: "rpc_durations_histogram_seconds", Help: "RPC latency distributions.", Buckets: prometheus.LinearBuckets(normMean-5*normDomain, .5*normDomain, 20), NativeHistogramBucketFactor: 1.1, NativeHistogramZeroThreshold: prometheus.NativeHistogramZeroThresholdZero, }), } reg.MustRegister(m.rpcDurations) reg.MustRegister(m.rpcDurationsHistogram) return m } func main() { var ( addr = flag.String("listen-address", ":8080", "The address to listen on for HTTP requests.") uniformDomain = flag.Float64("uniform.domain", 0.0002, "The domain for the uniform distribution.") normDomain = flag.Float64("normal.domain", 0.0002, "The domain for the normal distribution.") normMean = flag.Float64("normal.mean", 0.00001, "The mean for the normal distribution.") oscillationPeriod = flag.Duration("oscillation-period", 10*time.Minute, "The duration of the rate oscillation period.") ) flag.Parse() // Create a non-global registry. reg := prometheus.NewRegistry() // Create new metrics and register them using the custom registry. m := NewMetrics(reg, *normMean, *normDomain) // Add Go module build info. reg.MustRegister(collectors.NewBuildInfoCollector()) start := time.Now() oscillationFactor := func() float64 { return 2 + math.Sin(math.Sin(2*math.Pi*float64(time.Since(start))/float64(*oscillationPeriod))) } // Periodically record some sample latencies for the three services. go func() { for { v := rand.Float64() * *uniformDomain m.rpcDurations.WithLabelValues("uniform").Observe(v) time.Sleep(time.Duration(100*oscillationFactor()) * time.Millisecond) } }() go func() { m.rpcDurationsHistogram.(prometheus.ExemplarObserver).ObserveWithExemplar( 0, prometheus.Labels{"dummyID": fmt.Sprint(rand.Intn(100000))}, ) m.rpcDurationsHistogram.(prometheus.ExemplarObserver).ObserveWithExemplar( 0, prometheus.Labels{"dummyID": fmt.Sprint(rand.Intn(100000))}, ) m.rpcDurationsHistogram.(prometheus.ExemplarObserver).ObserveWithExemplar( 0, prometheus.Labels{"dummyID": fmt.Sprint(rand.Intn(100000))}, ) m.rpcDurationsHistogram.(prometheus.ExemplarObserver).ObserveWithExemplar( 0.01, prometheus.Labels{"dummyID": fmt.Sprint(rand.Intn(100000))}, ) for { v := (rand.NormFloat64() * *normDomain) + *normMean m.rpcDurations.WithLabelValues("normal").Observe(v) // Demonstrate exemplar support with a dummy ID. This // would be something like a trace ID in a real // application. Note the necessary type assertion. We // already know that rpcDurationsHistogram implements // the ExemplarObserver interface and thus don't need to // check the outcome of the type assertion. m.rpcDurationsHistogram.(prometheus.ExemplarObserver).ObserveWithExemplar( v, prometheus.Labels{"dummyID": fmt.Sprint(rand.Intn(100000))}, ) time.Sleep(time.Duration(oscillationFactor()) * time.Millisecond) } }() go func() { for { v := rand.ExpFloat64() / 1e6 m.rpcDurations.WithLabelValues("exponential").Observe(v) time.Sleep(time.Duration(50*oscillationFactor()) * time.Millisecond) } }() // Expose the registered metrics via HTTP. http.Handle("/metrics", promhttp.HandlerFor( reg, promhttp.HandlerOpts{ // Opt into OpenMetrics to support exemplars. EnableOpenMetrics: true, // Pass custom registry Registry: reg, }, )) log.Fatal(http.ListenAndServe(*addr, nil)) }