// Copyright 2014 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package prometheus import ( "fmt" "math" "runtime" "sort" "sync" "sync/atomic" "time" dto "github.com/prometheus/client_model/go" "github.com/beorn7/perks/quantile" "google.golang.org/protobuf/proto" "google.golang.org/protobuf/types/known/timestamppb" ) // quantileLabel is used for the label that defines the quantile in a // summary. const quantileLabel = "quantile" // A Summary captures individual observations from an event or sample stream and // summarizes them in a manner similar to traditional summary statistics: 1. sum // of observations, 2. observation count, 3. rank estimations. // // A typical use-case is the observation of request latencies. By default, a // Summary provides the median, the 90th and the 99th percentile of the latency // as rank estimations. However, the default behavior will change in the // upcoming v1.0.0 of the library. There will be no rank estimations at all by // default. For a sane transition, it is recommended to set the desired rank // estimations explicitly. // // Note that the rank estimations cannot be aggregated in a meaningful way with // the Prometheus query language (i.e. you cannot average or add them). If you // need aggregatable quantiles (e.g. you want the 99th percentile latency of all // queries served across all instances of a service), consider the Histogram // metric type. See the Prometheus documentation for more details. // // To create Summary instances, use NewSummary. type Summary interface { Metric Collector // Observe adds a single observation to the summary. Observations are // usually positive or zero. Negative observations are accepted but // prevent current versions of Prometheus from properly detecting // counter resets in the sum of observations. See // https://prometheus.io/docs/practices/histograms/#count-and-sum-of-observations // for details. Observe(float64) } var errQuantileLabelNotAllowed = fmt.Errorf( "%q is not allowed as label name in summaries", quantileLabel, ) // Default values for SummaryOpts. const ( // DefMaxAge is the default duration for which observations stay // relevant. DefMaxAge time.Duration = 10 * time.Minute // DefAgeBuckets is the default number of buckets used to calculate the // age of observations. DefAgeBuckets = 5 // DefBufCap is the standard buffer size for collecting Summary observations. DefBufCap = 500 ) // SummaryOpts bundles the options for creating a Summary metric. It is // mandatory to set Name to a non-empty string. While all other fields are // optional and can safely be left at their zero value, it is recommended to set // a help string and to explicitly set the Objectives field to the desired value // as the default value will change in the upcoming v1.0.0 of the library. type SummaryOpts struct { // Namespace, Subsystem, and Name are components of the fully-qualified // name of the Summary (created by joining these components with // "_"). Only Name is mandatory, the others merely help structuring the // name. Note that the fully-qualified name of the Summary must be a // valid Prometheus metric name. Namespace string Subsystem string Name string // Help provides information about this Summary. // // Metrics with the same fully-qualified name must have the same Help // string. Help string // ConstLabels are used to attach fixed labels to this metric. Metrics // with the same fully-qualified name must have the same label names in // their ConstLabels. // // Due to the way a Summary is represented in the Prometheus text format // and how it is handled by the Prometheus server internally, “quantile” // is an illegal label name. Construction of a Summary or SummaryVec // will panic if this label name is used in ConstLabels. // // ConstLabels are only used rarely. In particular, do not use them to // attach the same labels to all your metrics. Those use cases are // better covered by target labels set by the scraping Prometheus // server, or by one specific metric (e.g. a build_info or a // machine_role metric). See also // https://prometheus.io/docs/instrumenting/writing_exporters/#target-labels-not-static-scraped-labels ConstLabels Labels // Objectives defines the quantile rank estimates with their respective // absolute error. If Objectives[q] = e, then the value reported for q // will be the φ-quantile value for some φ between q-e and q+e. The // default value is an empty map, resulting in a summary without // quantiles. Objectives map[float64]float64 // MaxAge defines the duration for which an observation stays relevant // for the summary. Only applies to pre-calculated quantiles, does not // apply to _sum and _count. Must be positive. The default value is // DefMaxAge. MaxAge time.Duration // AgeBuckets is the number of buckets used to exclude observations that // are older than MaxAge from the summary. A higher number has a // resource penalty, so only increase it if the higher resolution is // really required. For very high observation rates, you might want to // reduce the number of age buckets. With only one age bucket, you will // effectively see a complete reset of the summary each time MaxAge has // passed. The default value is DefAgeBuckets. AgeBuckets uint32 // BufCap defines the default sample stream buffer size. The default // value of DefBufCap should suffice for most uses. If there is a need // to increase the value, a multiple of 500 is recommended (because that // is the internal buffer size of the underlying package // "github.com/bmizerany/perks/quantile"). BufCap uint32 // now is for testing purposes, by default it's time.Now. now func() time.Time } // SummaryVecOpts bundles the options to create a SummaryVec metric. // It is mandatory to set SummaryOpts, see there for mandatory fields. VariableLabels // is optional and can safely be left to its default value. type SummaryVecOpts struct { SummaryOpts // VariableLabels are used to partition the metric vector by the given set // of labels. Each label value will be constrained with the optional Constraint // function, if provided. VariableLabels ConstrainableLabels } // Problem with the sliding-window decay algorithm... The Merge method of // perk/quantile is actually not working as advertised - and it might be // unfixable, as the underlying algorithm is apparently not capable of merging // summaries in the first place. To avoid using Merge, we are currently adding // observations to _each_ age bucket, i.e. the effort to add a sample is // essentially multiplied by the number of age buckets. When rotating age // buckets, we empty the previous head stream. On scrape time, we simply take // the quantiles from the head stream (no merging required). Result: More effort // on observation time, less effort on scrape time, which is exactly the // opposite of what we try to accomplish, but at least the results are correct. // // The quite elegant previous contraption to merge the age buckets efficiently // on scrape time (see code up commit 6b9530d72ea715f0ba612c0120e6e09fbf1d49d0) // can't be used anymore. // NewSummary creates a new Summary based on the provided SummaryOpts. func NewSummary(opts SummaryOpts) Summary { return newSummary( NewDesc( BuildFQName(opts.Namespace, opts.Subsystem, opts.Name), opts.Help, nil, opts.ConstLabels, ), opts, ) } func newSummary(desc *Desc, opts SummaryOpts, labelValues ...string) Summary { if len(desc.variableLabels.names) != len(labelValues) { panic(makeInconsistentCardinalityError(desc.fqName, desc.variableLabels.names, labelValues)) } for _, n := range desc.variableLabels.names { if n == quantileLabel { panic(errQuantileLabelNotAllowed) } } for _, lp := range desc.constLabelPairs { if lp.GetName() == quantileLabel { panic(errQuantileLabelNotAllowed) } } if opts.Objectives == nil { opts.Objectives = map[float64]float64{} } if opts.MaxAge < 0 { panic(fmt.Errorf("illegal max age MaxAge=%v", opts.MaxAge)) } if opts.MaxAge == 0 { opts.MaxAge = DefMaxAge } if opts.AgeBuckets == 0 { opts.AgeBuckets = DefAgeBuckets } if opts.BufCap == 0 { opts.BufCap = DefBufCap } if opts.now == nil { opts.now = time.Now } if len(opts.Objectives) == 0 { // Use the lock-free implementation of a Summary without objectives. s := &noObjectivesSummary{ desc: desc, labelPairs: MakeLabelPairs(desc, labelValues), counts: [2]*summaryCounts{{}, {}}, } s.init(s) // Init self-collection. s.createdTs = timestamppb.New(opts.now()) return s } s := &summary{ desc: desc, now: opts.now, objectives: opts.Objectives, sortedObjectives: make([]float64, 0, len(opts.Objectives)), labelPairs: MakeLabelPairs(desc, labelValues), hotBuf: make([]float64, 0, opts.BufCap), coldBuf: make([]float64, 0, opts.BufCap), streamDuration: opts.MaxAge / time.Duration(opts.AgeBuckets), } s.headStreamExpTime = opts.now().Add(s.streamDuration) s.hotBufExpTime = s.headStreamExpTime for i := uint32(0); i < opts.AgeBuckets; i++ { s.streams = append(s.streams, s.newStream()) } s.headStream = s.streams[0] for qu := range s.objectives { s.sortedObjectives = append(s.sortedObjectives, qu) } sort.Float64s(s.sortedObjectives) s.init(s) // Init self-collection. s.createdTs = timestamppb.New(opts.now()) return s } type summary struct { selfCollector bufMtx sync.Mutex // Protects hotBuf and hotBufExpTime. mtx sync.Mutex // Protects every other moving part. // Lock bufMtx before mtx if both are needed. desc *Desc now func() time.Time objectives map[float64]float64 sortedObjectives []float64 labelPairs []*dto.LabelPair sum float64 cnt uint64 hotBuf, coldBuf []float64 streams []*quantile.Stream streamDuration time.Duration headStream *quantile.Stream headStreamIdx int headStreamExpTime, hotBufExpTime time.Time createdTs *timestamppb.Timestamp } func (s *summary) Desc() *Desc { return s.desc } func (s *summary) Observe(v float64) { s.bufMtx.Lock() defer s.bufMtx.Unlock() now := s.now() if now.After(s.hotBufExpTime) { s.asyncFlush(now) } s.hotBuf = append(s.hotBuf, v) if len(s.hotBuf) == cap(s.hotBuf) { s.asyncFlush(now) } } func (s *summary) Write(out *dto.Metric) error { sum := &dto.Summary{ CreatedTimestamp: s.createdTs, } qs := make([]*dto.Quantile, 0, len(s.objectives)) s.bufMtx.Lock() s.mtx.Lock() // Swap bufs even if hotBuf is empty to set new hotBufExpTime. s.swapBufs(s.now()) s.bufMtx.Unlock() s.flushColdBuf() sum.SampleCount = proto.Uint64(s.cnt) sum.SampleSum = proto.Float64(s.sum) for _, rank := range s.sortedObjectives { var q float64 if s.headStream.Count() == 0 { q = math.NaN() } else { q = s.headStream.Query(rank) } qs = append(qs, &dto.Quantile{ Quantile: proto.Float64(rank), Value: proto.Float64(q), }) } s.mtx.Unlock() if len(qs) > 0 { sort.Sort(quantSort(qs)) } sum.Quantile = qs out.Summary = sum out.Label = s.labelPairs return nil } func (s *summary) newStream() *quantile.Stream { return quantile.NewTargeted(s.objectives) } // asyncFlush needs bufMtx locked. func (s *summary) asyncFlush(now time.Time) { s.mtx.Lock() s.swapBufs(now) // Unblock the original goroutine that was responsible for the mutation // that triggered the compaction. But hold onto the global non-buffer // state mutex until the operation finishes. go func() { s.flushColdBuf() s.mtx.Unlock() }() } // rotateStreams needs mtx AND bufMtx locked. func (s *summary) maybeRotateStreams() { for !s.hotBufExpTime.Equal(s.headStreamExpTime) { s.headStream.Reset() s.headStreamIdx++ if s.headStreamIdx >= len(s.streams) { s.headStreamIdx = 0 } s.headStream = s.streams[s.headStreamIdx] s.headStreamExpTime = s.headStreamExpTime.Add(s.streamDuration) } } // flushColdBuf needs mtx locked. func (s *summary) flushColdBuf() { for _, v := range s.coldBuf { for _, stream := range s.streams { stream.Insert(v) } s.cnt++ s.sum += v } s.coldBuf = s.coldBuf[0:0] s.maybeRotateStreams() } // swapBufs needs mtx AND bufMtx locked, coldBuf must be empty. func (s *summary) swapBufs(now time.Time) { if len(s.coldBuf) != 0 { panic("coldBuf is not empty") } s.hotBuf, s.coldBuf = s.coldBuf, s.hotBuf // hotBuf is now empty and gets new expiration set. for now.After(s.hotBufExpTime) { s.hotBufExpTime = s.hotBufExpTime.Add(s.streamDuration) } } type summaryCounts struct { // sumBits contains the bits of the float64 representing the sum of all // observations. sumBits and count have to go first in the struct to // guarantee alignment for atomic operations. // http://golang.org/pkg/sync/atomic/#pkg-note-BUG sumBits uint64 count uint64 } type noObjectivesSummary struct { // countAndHotIdx enables lock-free writes with use of atomic updates. // The most significant bit is the hot index [0 or 1] of the count field // below. Observe calls update the hot one. All remaining bits count the // number of Observe calls. Observe starts by incrementing this counter, // and finish by incrementing the count field in the respective // summaryCounts, as a marker for completion. // // Calls of the Write method (which are non-mutating reads from the // perspective of the summary) swap the hot–cold under the writeMtx // lock. A cooldown is awaited (while locked) by comparing the number of // observations with the initiation count. Once they match, then the // last observation on the now cool one has completed. All cool fields must // be merged into the new hot before releasing writeMtx. // Fields with atomic access first! See alignment constraint: // http://golang.org/pkg/sync/atomic/#pkg-note-BUG countAndHotIdx uint64 selfCollector desc *Desc writeMtx sync.Mutex // Only used in the Write method. // Two counts, one is "hot" for lock-free observations, the other is // "cold" for writing out a dto.Metric. It has to be an array of // pointers to guarantee 64bit alignment of the histogramCounts, see // http://golang.org/pkg/sync/atomic/#pkg-note-BUG. counts [2]*summaryCounts labelPairs []*dto.LabelPair createdTs *timestamppb.Timestamp } func (s *noObjectivesSummary) Desc() *Desc { return s.desc } func (s *noObjectivesSummary) Observe(v float64) { // We increment h.countAndHotIdx so that the counter in the lower // 63 bits gets incremented. At the same time, we get the new value // back, which we can use to find the currently-hot counts. n := atomic.AddUint64(&s.countAndHotIdx, 1) hotCounts := s.counts[n>>63] for { oldBits := atomic.LoadUint64(&hotCounts.sumBits) newBits := math.Float64bits(math.Float64frombits(oldBits) + v) if atomic.CompareAndSwapUint64(&hotCounts.sumBits, oldBits, newBits) { break } } // Increment count last as we take it as a signal that the observation // is complete. atomic.AddUint64(&hotCounts.count, 1) } func (s *noObjectivesSummary) Write(out *dto.Metric) error { // For simplicity, we protect this whole method by a mutex. It is not in // the hot path, i.e. Observe is called much more often than Write. The // complication of making Write lock-free isn't worth it, if possible at // all. s.writeMtx.Lock() defer s.writeMtx.Unlock() // Adding 1<<63 switches the hot index (from 0 to 1 or from 1 to 0) // without touching the count bits. See the struct comments for a full // description of the algorithm. n := atomic.AddUint64(&s.countAndHotIdx, 1<<63) // count is contained unchanged in the lower 63 bits. count := n & ((1 << 63) - 1) // The most significant bit tells us which counts is hot. The complement // is thus the cold one. hotCounts := s.counts[n>>63] coldCounts := s.counts[(^n)>>63] // Await cooldown. for count != atomic.LoadUint64(&coldCounts.count) { runtime.Gosched() // Let observations get work done. } sum := &dto.Summary{ SampleCount: proto.Uint64(count), SampleSum: proto.Float64(math.Float64frombits(atomic.LoadUint64(&coldCounts.sumBits))), CreatedTimestamp: s.createdTs, } out.Summary = sum out.Label = s.labelPairs // Finally add all the cold counts to the new hot counts and reset the cold counts. atomic.AddUint64(&hotCounts.count, count) atomic.StoreUint64(&coldCounts.count, 0) for { oldBits := atomic.LoadUint64(&hotCounts.sumBits) newBits := math.Float64bits(math.Float64frombits(oldBits) + sum.GetSampleSum()) if atomic.CompareAndSwapUint64(&hotCounts.sumBits, oldBits, newBits) { atomic.StoreUint64(&coldCounts.sumBits, 0) break } } return nil } type quantSort []*dto.Quantile func (s quantSort) Len() int { return len(s) } func (s quantSort) Swap(i, j int) { s[i], s[j] = s[j], s[i] } func (s quantSort) Less(i, j int) bool { return s[i].GetQuantile() < s[j].GetQuantile() } // SummaryVec is a Collector that bundles a set of Summaries that all share the // same Desc, but have different values for their variable labels. This is used // if you want to count the same thing partitioned by various dimensions // (e.g. HTTP request latencies, partitioned by status code and method). Create // instances with NewSummaryVec. type SummaryVec struct { *MetricVec } // NewSummaryVec creates a new SummaryVec based on the provided SummaryOpts and // partitioned by the given label names. // // Due to the way a Summary is represented in the Prometheus text format and how // it is handled by the Prometheus server internally, “quantile” is an illegal // label name. NewSummaryVec will panic if this label name is used. func NewSummaryVec(opts SummaryOpts, labelNames []string) *SummaryVec { return V2.NewSummaryVec(SummaryVecOpts{ SummaryOpts: opts, VariableLabels: UnconstrainedLabels(labelNames), }) } // NewSummaryVec creates a new SummaryVec based on the provided SummaryVecOpts. func (v2) NewSummaryVec(opts SummaryVecOpts) *SummaryVec { for _, ln := range opts.VariableLabels.labelNames() { if ln == quantileLabel { panic(errQuantileLabelNotAllowed) } } desc := V2.NewDesc( BuildFQName(opts.Namespace, opts.Subsystem, opts.Name), opts.Help, opts.VariableLabels, opts.ConstLabels, ) return &SummaryVec{ MetricVec: NewMetricVec(desc, func(lvs ...string) Metric { return newSummary(desc, opts.SummaryOpts, lvs...) }), } } // GetMetricWithLabelValues returns the Summary for the given slice of label // values (same order as the variable labels in Desc). If that combination of // label values is accessed for the first time, a new Summary is created. // // It is possible to call this method without using the returned Summary to only // create the new Summary but leave it at its starting value, a Summary without // any observations. // // Keeping the Summary for later use is possible (and should be considered if // performance is critical), but keep in mind that Reset, DeleteLabelValues and // Delete can be used to delete the Summary from the SummaryVec. In that case, // the Summary will still exist, but it will not be exported anymore, even if a // Summary with the same label values is created later. See also the CounterVec // example. // // An error is returned if the number of label values is not the same as the // number of variable labels in Desc (minus any curried labels). // // Note that for more than one label value, this method is prone to mistakes // caused by an incorrect order of arguments. Consider GetMetricWith(Labels) as // an alternative to avoid that type of mistake. For higher label numbers, the // latter has a much more readable (albeit more verbose) syntax, but it comes // with a performance overhead (for creating and processing the Labels map). // See also the GaugeVec example. func (v *SummaryVec) GetMetricWithLabelValues(lvs ...string) (Observer, error) { metric, err := v.MetricVec.GetMetricWithLabelValues(lvs...) if metric != nil { return metric.(Observer), err } return nil, err } // GetMetricWith returns the Summary for the given Labels map (the label names // must match those of the variable labels in Desc). If that label map is // accessed for the first time, a new Summary is created. Implications of // creating a Summary without using it and keeping the Summary for later use are // the same as for GetMetricWithLabelValues. // // An error is returned if the number and names of the Labels are inconsistent // with those of the variable labels in Desc (minus any curried labels). // // This method is used for the same purpose as // GetMetricWithLabelValues(...string). See there for pros and cons of the two // methods. func (v *SummaryVec) GetMetricWith(labels Labels) (Observer, error) { metric, err := v.MetricVec.GetMetricWith(labels) if metric != nil { return metric.(Observer), err } return nil, err } // WithLabelValues works as GetMetricWithLabelValues, but panics where // GetMetricWithLabelValues would have returned an error. Not returning an // error allows shortcuts like // // myVec.WithLabelValues("404", "GET").Observe(42.21) func (v *SummaryVec) WithLabelValues(lvs ...string) Observer { s, err := v.GetMetricWithLabelValues(lvs...) if err != nil { panic(err) } return s } // With works as GetMetricWith, but panics where GetMetricWithLabels would have // returned an error. Not returning an error allows shortcuts like // // myVec.With(prometheus.Labels{"code": "404", "method": "GET"}).Observe(42.21) func (v *SummaryVec) With(labels Labels) Observer { s, err := v.GetMetricWith(labels) if err != nil { panic(err) } return s } // CurryWith returns a vector curried with the provided labels, i.e. the // returned vector has those labels pre-set for all labeled operations performed // on it. The cardinality of the curried vector is reduced accordingly. The // order of the remaining labels stays the same (just with the curried labels // taken out of the sequence – which is relevant for the // (GetMetric)WithLabelValues methods). It is possible to curry a curried // vector, but only with labels not yet used for currying before. // // The metrics contained in the SummaryVec are shared between the curried and // uncurried vectors. They are just accessed differently. Curried and uncurried // vectors behave identically in terms of collection. Only one must be // registered with a given registry (usually the uncurried version). The Reset // method deletes all metrics, even if called on a curried vector. func (v *SummaryVec) CurryWith(labels Labels) (ObserverVec, error) { vec, err := v.MetricVec.CurryWith(labels) if vec != nil { return &SummaryVec{vec}, err } return nil, err } // MustCurryWith works as CurryWith but panics where CurryWith would have // returned an error. func (v *SummaryVec) MustCurryWith(labels Labels) ObserverVec { vec, err := v.CurryWith(labels) if err != nil { panic(err) } return vec } type constSummary struct { desc *Desc count uint64 sum float64 quantiles map[float64]float64 labelPairs []*dto.LabelPair createdTs *timestamppb.Timestamp } func (s *constSummary) Desc() *Desc { return s.desc } func (s *constSummary) Write(out *dto.Metric) error { sum := &dto.Summary{ CreatedTimestamp: s.createdTs, } qs := make([]*dto.Quantile, 0, len(s.quantiles)) sum.SampleCount = proto.Uint64(s.count) sum.SampleSum = proto.Float64(s.sum) for rank, q := range s.quantiles { qs = append(qs, &dto.Quantile{ Quantile: proto.Float64(rank), Value: proto.Float64(q), }) } if len(qs) > 0 { sort.Sort(quantSort(qs)) } sum.Quantile = qs out.Summary = sum out.Label = s.labelPairs return nil } // NewConstSummary returns a metric representing a Prometheus summary with fixed // values for the count, sum, and quantiles. As those parameters cannot be // changed, the returned value does not implement the Summary interface (but // only the Metric interface). Users of this package will not have much use for // it in regular operations. However, when implementing custom Collectors, it is // useful as a throw-away metric that is generated on the fly to send it to // Prometheus in the Collect method. // // quantiles maps ranks to quantile values. For example, a median latency of // 0.23s and a 99th percentile latency of 0.56s would be expressed as: // // map[float64]float64{0.5: 0.23, 0.99: 0.56} // // NewConstSummary returns an error if the length of labelValues is not // consistent with the variable labels in Desc or if Desc is invalid. func NewConstSummary( desc *Desc, count uint64, sum float64, quantiles map[float64]float64, labelValues ...string, ) (Metric, error) { if desc.err != nil { return nil, desc.err } if err := validateLabelValues(labelValues, len(desc.variableLabels.names)); err != nil { return nil, err } return &constSummary{ desc: desc, count: count, sum: sum, quantiles: quantiles, labelPairs: MakeLabelPairs(desc, labelValues), }, nil } // MustNewConstSummary is a version of NewConstSummary that panics where // NewConstMetric would have returned an error. func MustNewConstSummary( desc *Desc, count uint64, sum float64, quantiles map[float64]float64, labelValues ...string, ) Metric { m, err := NewConstSummary(desc, count, sum, quantiles, labelValues...) if err != nil { panic(err) } return m } // NewConstSummaryWithCreatedTimestamp does the same thing as NewConstSummary but sets the created timestamp. func NewConstSummaryWithCreatedTimestamp( desc *Desc, count uint64, sum float64, quantiles map[float64]float64, ct time.Time, labelValues ...string, ) (Metric, error) { if desc.err != nil { return nil, desc.err } if err := validateLabelValues(labelValues, len(desc.variableLabels.names)); err != nil { return nil, err } return &constSummary{ desc: desc, count: count, sum: sum, quantiles: quantiles, labelPairs: MakeLabelPairs(desc, labelValues), createdTs: timestamppb.New(ct), }, nil } // MustNewConstSummaryWithCreatedTimestamp is a version of NewConstSummaryWithCreatedTimestamp that panics where // NewConstSummaryWithCreatedTimestamp would have returned an error. func MustNewConstSummaryWithCreatedTimestamp( desc *Desc, count uint64, sum float64, quantiles map[float64]float64, ct time.Time, labelValues ...string, ) Metric { m, err := NewConstSummaryWithCreatedTimestamp(desc, count, sum, quantiles, ct, labelValues...) if err != nil { panic(err) } return m }