// Copyright 2015 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package prometheus import ( "fmt" "math" "runtime" "sort" "sync" "sync/atomic" "time" dto "github.com/prometheus/client_model/go" "google.golang.org/protobuf/proto" "google.golang.org/protobuf/types/known/timestamppb" ) // nativeHistogramBounds for the frac of observed values. Only relevant for // schema > 0. The position in the slice is the schema. (0 is never used, just // here for convenience of using the schema directly as the index.) // // TODO(beorn7): Currently, we do a binary search into these slices. There are // ways to turn it into a small number of simple array lookups. It probably only // matters for schema 5 and beyond, but should be investigated. See this comment // as a starting point: // https://github.com/open-telemetry/opentelemetry-specification/issues/1776#issuecomment-870164310 var nativeHistogramBounds = [][]float64{ // Schema "0": {0.5}, // Schema 1: {0.5, 0.7071067811865475}, // Schema 2: {0.5, 0.5946035575013605, 0.7071067811865475, 0.8408964152537144}, // Schema 3: { 0.5, 0.5452538663326288, 0.5946035575013605, 0.6484197773255048, 0.7071067811865475, 0.7711054127039704, 0.8408964152537144, 0.9170040432046711, }, // Schema 4: { 0.5, 0.5221368912137069, 0.5452538663326288, 0.5693943173783458, 0.5946035575013605, 0.620928906036742, 0.6484197773255048, 0.6771277734684463, 0.7071067811865475, 0.7384130729697496, 0.7711054127039704, 0.805245165974627, 0.8408964152537144, 0.8781260801866495, 0.9170040432046711, 0.9576032806985735, }, // Schema 5: { 0.5, 0.5109485743270583, 0.5221368912137069, 0.5335702003384117, 0.5452538663326288, 0.5571933712979462, 0.5693943173783458, 0.5818624293887887, 0.5946035575013605, 0.6076236799902344, 0.620928906036742, 0.6345254785958666, 0.6484197773255048, 0.6626183215798706, 0.6771277734684463, 0.6919549409819159, 0.7071067811865475, 0.7225904034885232, 0.7384130729697496, 0.7545822137967112, 0.7711054127039704, 0.7879904225539431, 0.805245165974627, 0.8228777390769823, 0.8408964152537144, 0.8593096490612387, 0.8781260801866495, 0.8973545375015533, 0.9170040432046711, 0.9370838170551498, 0.9576032806985735, 0.9785720620876999, }, // Schema 6: { 0.5, 0.5054446430258502, 0.5109485743270583, 0.5165124395106142, 0.5221368912137069, 0.5278225891802786, 0.5335702003384117, 0.5393803988785598, 0.5452538663326288, 0.5511912916539204, 0.5571933712979462, 0.5632608093041209, 0.5693943173783458, 0.5755946149764913, 0.5818624293887887, 0.5881984958251406, 0.5946035575013605, 0.6010783657263515, 0.6076236799902344, 0.6142402680534349, 0.620928906036742, 0.6276903785123455, 0.6345254785958666, 0.6414350080393891, 0.6484197773255048, 0.6554806057623822, 0.6626183215798706, 0.6698337620266515, 0.6771277734684463, 0.6845012114872953, 0.6919549409819159, 0.6994898362691555, 0.7071067811865475, 0.7148066691959849, 0.7225904034885232, 0.7304588970903234, 0.7384130729697496, 0.7464538641456323, 0.7545822137967112, 0.762799075372269, 0.7711054127039704, 0.7795022001189185, 0.7879904225539431, 0.7965710756711334, 0.805245165974627, 0.8140137109286738, 0.8228777390769823, 0.8318382901633681, 0.8408964152537144, 0.8500531768592616, 0.8593096490612387, 0.8686669176368529, 0.8781260801866495, 0.8876882462632604, 0.8973545375015533, 0.9071260877501991, 0.9170040432046711, 0.9269895625416926, 0.9370838170551498, 0.9472879907934827, 0.9576032806985735, 0.9680308967461471, 0.9785720620876999, 0.9892280131939752, }, // Schema 7: { 0.5, 0.5027149505564014, 0.5054446430258502, 0.5081891574554764, 0.5109485743270583, 0.5137229745593818, 0.5165124395106142, 0.5193170509806894, 0.5221368912137069, 0.5249720429003435, 0.5278225891802786, 0.5306886136446309, 0.5335702003384117, 0.5364674337629877, 0.5393803988785598, 0.5423091811066545, 0.5452538663326288, 0.5482145409081883, 0.5511912916539204, 0.5541842058618393, 0.5571933712979462, 0.5602188762048033, 0.5632608093041209, 0.5663192597993595, 0.5693943173783458, 0.572486072215902, 0.5755946149764913, 0.5787200368168754, 0.5818624293887887, 0.585021884841625, 0.5881984958251406, 0.5913923554921704, 0.5946035575013605, 0.5978321960199137, 0.6010783657263515, 0.6043421618132907, 0.6076236799902344, 0.6109230164863786, 0.6142402680534349, 0.6175755319684665, 0.620928906036742, 0.6243004885946023, 0.6276903785123455, 0.6310986751971253, 0.6345254785958666, 0.637970889198196, 0.6414350080393891, 0.6449179367033329, 0.6484197773255048, 0.6519406325959679, 0.6554806057623822, 0.659039800633032, 0.6626183215798706, 0.6662162735415805, 0.6698337620266515, 0.6734708931164728, 0.6771277734684463, 0.6808045103191123, 0.6845012114872953, 0.688217985377265, 0.6919549409819159, 0.6957121878859629, 0.6994898362691555, 0.7032879969095076, 0.7071067811865475, 0.7109463010845827, 0.7148066691959849, 0.718687998724491, 0.7225904034885232, 0.7265139979245261, 0.7304588970903234, 0.7344252166684908, 0.7384130729697496, 0.7424225829363761, 0.7464538641456323, 0.7505070348132126, 0.7545822137967112, 0.7586795205991071, 0.762799075372269, 0.7669409989204777, 0.7711054127039704, 0.7752924388424999, 0.7795022001189185, 0.7837348199827764, 0.7879904225539431, 0.7922691326262467, 0.7965710756711334, 0.8008963778413465, 0.805245165974627, 0.8096175675974316, 0.8140137109286738, 0.8184337248834821, 0.8228777390769823, 0.8273458838280969, 0.8318382901633681, 0.8363550898207981, 0.8408964152537144, 0.8454623996346523, 0.8500531768592616, 0.8546688815502312, 0.8593096490612387, 0.8639756154809185, 0.8686669176368529, 0.8733836930995842, 0.8781260801866495, 0.8828942179666361, 0.8876882462632604, 0.8925083056594671, 0.8973545375015533, 0.9022270839033115, 0.9071260877501991, 0.9120516927035263, 0.9170040432046711, 0.9219832844793128, 0.9269895625416926, 0.9320230241988943, 0.9370838170551498, 0.9421720895161669, 0.9472879907934827, 0.9524316709088368, 0.9576032806985735, 0.9628029718180622, 0.9680308967461471, 0.9732872087896164, 0.9785720620876999, 0.9838856116165875, 0.9892280131939752, 0.9945994234836328, }, // Schema 8: { 0.5, 0.5013556375251013, 0.5027149505564014, 0.5040779490592088, 0.5054446430258502, 0.5068150424757447, 0.5081891574554764, 0.509566998038869, 0.5109485743270583, 0.5123338964485679, 0.5137229745593818, 0.5151158188430205, 0.5165124395106142, 0.5179128468009786, 0.5193170509806894, 0.520725062344158, 0.5221368912137069, 0.5235525479396449, 0.5249720429003435, 0.526395386502313, 0.5278225891802786, 0.5292536613972564, 0.5306886136446309, 0.5321274564422321, 0.5335702003384117, 0.5350168559101208, 0.5364674337629877, 0.5379219445313954, 0.5393803988785598, 0.5408428074966075, 0.5423091811066545, 0.5437795304588847, 0.5452538663326288, 0.5467321995364429, 0.5482145409081883, 0.549700901315111, 0.5511912916539204, 0.5526857228508706, 0.5541842058618393, 0.5556867516724088, 0.5571933712979462, 0.5587040757836845, 0.5602188762048033, 0.5617377836665098, 0.5632608093041209, 0.564787964283144, 0.5663192597993595, 0.5678547070789026, 0.5693943173783458, 0.5709381019847808, 0.572486072215902, 0.5740382394200894, 0.5755946149764913, 0.5771552102951081, 0.5787200368168754, 0.5802891060137493, 0.5818624293887887, 0.5834400184762408, 0.585021884841625, 0.5866080400818185, 0.5881984958251406, 0.5897932637314379, 0.5913923554921704, 0.5929957828304968, 0.5946035575013605, 0.5962156912915756, 0.5978321960199137, 0.5994530835371903, 0.6010783657263515, 0.6027080545025619, 0.6043421618132907, 0.6059806996384005, 0.6076236799902344, 0.6092711149137041, 0.6109230164863786, 0.6125793968185725, 0.6142402680534349, 0.6159056423670379, 0.6175755319684665, 0.6192499490999082, 0.620928906036742, 0.622612415087629, 0.6243004885946023, 0.6259931389331581, 0.6276903785123455, 0.6293922197748583, 0.6310986751971253, 0.6328097572894031, 0.6345254785958666, 0.6362458516947014, 0.637970889198196, 0.6397006037528346, 0.6414350080393891, 0.6431741147730128, 0.6449179367033329, 0.6466664866145447, 0.6484197773255048, 0.6501778216898253, 0.6519406325959679, 0.6537082229673385, 0.6554806057623822, 0.6572577939746774, 0.659039800633032, 0.6608266388015788, 0.6626183215798706, 0.6644148621029772, 0.6662162735415805, 0.6680225691020727, 0.6698337620266515, 0.6716498655934177, 0.6734708931164728, 0.6752968579460171, 0.6771277734684463, 0.6789636531064505, 0.6808045103191123, 0.6826503586020058, 0.6845012114872953, 0.6863570825438342, 0.688217985377265, 0.690083933630119, 0.6919549409819159, 0.6938310211492645, 0.6957121878859629, 0.6975984549830999, 0.6994898362691555, 0.7013863456101023, 0.7032879969095076, 0.7051948041086352, 0.7071067811865475, 0.7090239421602076, 0.7109463010845827, 0.7128738720527471, 0.7148066691959849, 0.7167447066838943, 0.718687998724491, 0.7206365595643126, 0.7225904034885232, 0.7245495448210174, 0.7265139979245261, 0.7284837772007218, 0.7304588970903234, 0.7324393720732029, 0.7344252166684908, 0.7364164454346837, 0.7384130729697496, 0.7404151139112358, 0.7424225829363761, 0.7444354947621984, 0.7464538641456323, 0.7484777058836176, 0.7505070348132126, 0.7525418658117031, 0.7545822137967112, 0.7566280937263048, 0.7586795205991071, 0.7607365094544071, 0.762799075372269, 0.7648672334736434, 0.7669409989204777, 0.7690203869158282, 0.7711054127039704, 0.7731960915705107, 0.7752924388424999, 0.7773944698885442, 0.7795022001189185, 0.7816156449856788, 0.7837348199827764, 0.7858597406461707, 0.7879904225539431, 0.7901268813264122, 0.7922691326262467, 0.7944171921585818, 0.7965710756711334, 0.7987307989543135, 0.8008963778413465, 0.8030678282083853, 0.805245165974627, 0.8074284071024302, 0.8096175675974316, 0.8118126635086642, 0.8140137109286738, 0.8162207259936375, 0.8184337248834821, 0.820652723822003, 0.8228777390769823, 0.8251087869603088, 0.8273458838280969, 0.8295890460808079, 0.8318382901633681, 0.8340936325652911, 0.8363550898207981, 0.8386226785089391, 0.8408964152537144, 0.8431763167241966, 0.8454623996346523, 0.8477546807446661, 0.8500531768592616, 0.8523579048290255, 0.8546688815502312, 0.8569861239649629, 0.8593096490612387, 0.8616394738731368, 0.8639756154809185, 0.8663180910111553, 0.8686669176368529, 0.871022112577578, 0.8733836930995842, 0.8757516765159389, 0.8781260801866495, 0.8805069215187917, 0.8828942179666361, 0.8852879870317771, 0.8876882462632604, 0.890095013257712, 0.8925083056594671, 0.8949281411607002, 0.8973545375015533, 0.8997875124702672, 0.9022270839033115, 0.9046732696855155, 0.9071260877501991, 0.909585556079304, 0.9120516927035263, 0.9145245157024483, 0.9170040432046711, 0.9194902933879467, 0.9219832844793128, 0.9244830347552253, 0.9269895625416926, 0.92950288621441, 0.9320230241988943, 0.9345499949706191, 0.9370838170551498, 0.93962450902828, 0.9421720895161669, 0.9447265771954693, 0.9472879907934827, 0.9498563490882775, 0.9524316709088368, 0.9550139751351947, 0.9576032806985735, 0.9601996065815236, 0.9628029718180622, 0.9654133954938133, 0.9680308967461471, 0.9706554947643201, 0.9732872087896164, 0.9759260581154889, 0.9785720620876999, 0.9812252401044634, 0.9838856116165875, 0.9865531961276168, 0.9892280131939752, 0.9919100824251095, 0.9945994234836328, 0.9972960560854698, }, } // The nativeHistogramBounds above can be generated with the code below. // // TODO(beorn7): It's tempting to actually use `go generate` to generate the // code above. However, this could lead to slightly different numbers on // different architectures. We still need to come to terms if we are fine with // that, or if we might prefer to specify precise numbers in the standard. // // var nativeHistogramBounds [][]float64 = make([][]float64, 9) // // func init() { // // Populate nativeHistogramBounds. // numBuckets := 1 // for i := range nativeHistogramBounds { // bounds := []float64{0.5} // factor := math.Exp2(math.Exp2(float64(-i))) // for j := 0; j < numBuckets-1; j++ { // var bound float64 // if (j+1)%2 == 0 { // // Use previously calculated value for increased precision. // bound = nativeHistogramBounds[i-1][j/2+1] // } else { // bound = bounds[j] * factor // } // bounds = append(bounds, bound) // } // numBuckets *= 2 // nativeHistogramBounds[i] = bounds // } // } // A Histogram counts individual observations from an event or sample stream in // configurable static buckets (or in dynamic sparse buckets as part of the // experimental Native Histograms, see below for more details). Similar to a // Summary, it also provides a sum of observations and an observation count. // // On the Prometheus server, quantiles can be calculated from a Histogram using // the histogram_quantile PromQL function. // // Note that Histograms, in contrast to Summaries, can be aggregated in PromQL // (see the documentation for detailed procedures). However, Histograms require // the user to pre-define suitable buckets, and they are in general less // accurate. (Both problems are addressed by the experimental Native // Histograms. To use them, configure a NativeHistogramBucketFactor in the // HistogramOpts. They also require a Prometheus server v2.40+ with the // corresponding feature flag enabled.) // // The Observe method of a Histogram has a very low performance overhead in // comparison with the Observe method of a Summary. // // To create Histogram instances, use NewHistogram. type Histogram interface { Metric Collector // Observe adds a single observation to the histogram. Observations are // usually positive or zero. Negative observations are accepted but // prevent current versions of Prometheus from properly detecting // counter resets in the sum of observations. (The experimental Native // Histograms handle negative observations properly.) See // https://prometheus.io/docs/practices/histograms/#count-and-sum-of-observations // for details. Observe(float64) } // bucketLabel is used for the label that defines the upper bound of a // bucket of a histogram ("le" -> "less or equal"). const bucketLabel = "le" // DefBuckets are the default Histogram buckets. The default buckets are // tailored to broadly measure the response time (in seconds) of a network // service. Most likely, however, you will be required to define buckets // customized to your use case. var DefBuckets = []float64{.005, .01, .025, .05, .1, .25, .5, 1, 2.5, 5, 10} // DefNativeHistogramZeroThreshold is the default value for // NativeHistogramZeroThreshold in the HistogramOpts. // // The value is 2^-128 (or 0.5*2^-127 in the actual IEEE 754 representation), // which is a bucket boundary at all possible resolutions. const DefNativeHistogramZeroThreshold = 2.938735877055719e-39 // NativeHistogramZeroThresholdZero can be used as NativeHistogramZeroThreshold // in the HistogramOpts to create a zero bucket of width zero, i.e. a zero // bucket that only receives observations of precisely zero. const NativeHistogramZeroThresholdZero = -1 var errBucketLabelNotAllowed = fmt.Errorf( "%q is not allowed as label name in histograms", bucketLabel, ) // LinearBuckets creates 'count' regular buckets, each 'width' wide, where the // lowest bucket has an upper bound of 'start'. The final +Inf bucket is not // counted and not included in the returned slice. The returned slice is meant // to be used for the Buckets field of HistogramOpts. // // The function panics if 'count' is zero or negative. func LinearBuckets(start, width float64, count int) []float64 { if count < 1 { panic("LinearBuckets needs a positive count") } buckets := make([]float64, count) for i := range buckets { buckets[i] = start start += width } return buckets } // ExponentialBuckets creates 'count' regular buckets, where the lowest bucket // has an upper bound of 'start' and each following bucket's upper bound is // 'factor' times the previous bucket's upper bound. The final +Inf bucket is // not counted and not included in the returned slice. The returned slice is // meant to be used for the Buckets field of HistogramOpts. // // The function panics if 'count' is 0 or negative, if 'start' is 0 or negative, // or if 'factor' is less than or equal 1. func ExponentialBuckets(start, factor float64, count int) []float64 { if count < 1 { panic("ExponentialBuckets needs a positive count") } if start <= 0 { panic("ExponentialBuckets needs a positive start value") } if factor <= 1 { panic("ExponentialBuckets needs a factor greater than 1") } buckets := make([]float64, count) for i := range buckets { buckets[i] = start start *= factor } return buckets } // ExponentialBucketsRange creates 'count' buckets, where the lowest bucket is // 'min' and the highest bucket is 'max'. The final +Inf bucket is not counted // and not included in the returned slice. The returned slice is meant to be // used for the Buckets field of HistogramOpts. // // The function panics if 'count' is 0 or negative, if 'min' is 0 or negative. func ExponentialBucketsRange(min, max float64, count int) []float64 { if count < 1 { panic("ExponentialBucketsRange count needs a positive count") } if min <= 0 { panic("ExponentialBucketsRange min needs to be greater than 0") } // Formula for exponential buckets. // max = min*growthFactor^(bucketCount-1) // We know max/min and highest bucket. Solve for growthFactor. growthFactor := math.Pow(max/min, 1.0/float64(count-1)) // Now that we know growthFactor, solve for each bucket. buckets := make([]float64, count) for i := 1; i <= count; i++ { buckets[i-1] = min * math.Pow(growthFactor, float64(i-1)) } return buckets } // HistogramOpts bundles the options for creating a Histogram metric. It is // mandatory to set Name to a non-empty string. All other fields are optional // and can safely be left at their zero value, although it is strongly // encouraged to set a Help string. type HistogramOpts struct { // Namespace, Subsystem, and Name are components of the fully-qualified // name of the Histogram (created by joining these components with // "_"). Only Name is mandatory, the others merely help structuring the // name. Note that the fully-qualified name of the Histogram must be a // valid Prometheus metric name. Namespace string Subsystem string Name string // Help provides information about this Histogram. // // Metrics with the same fully-qualified name must have the same Help // string. Help string // ConstLabels are used to attach fixed labels to this metric. Metrics // with the same fully-qualified name must have the same label names in // their ConstLabels. // // ConstLabels are only used rarely. In particular, do not use them to // attach the same labels to all your metrics. Those use cases are // better covered by target labels set by the scraping Prometheus // server, or by one specific metric (e.g. a build_info or a // machine_role metric). See also // https://prometheus.io/docs/instrumenting/writing_exporters/#target-labels-not-static-scraped-labels ConstLabels Labels // Buckets defines the buckets into which observations are counted. Each // element in the slice is the upper inclusive bound of a bucket. The // values must be sorted in strictly increasing order. There is no need // to add a highest bucket with +Inf bound, it will be added // implicitly. If Buckets is left as nil or set to a slice of length // zero, it is replaced by default buckets. The default buckets are // DefBuckets if no buckets for a native histogram (see below) are used, // otherwise the default is no buckets. (In other words, if you want to // use both regular buckets and buckets for a native histogram, you have // to define the regular buckets here explicitly.) Buckets []float64 // If NativeHistogramBucketFactor is greater than one, so-called sparse // buckets are used (in addition to the regular buckets, if defined // above). A Histogram with sparse buckets will be ingested as a Native // Histogram by a Prometheus server with that feature enabled (requires // Prometheus v2.40+). Sparse buckets are exponential buckets covering // the whole float64 range (with the exception of the “zero” bucket, see // NativeHistogramZeroThreshold below). From any one bucket to the next, // the width of the bucket grows by a constant // factor. NativeHistogramBucketFactor provides an upper bound for this // factor (exception see below). The smaller // NativeHistogramBucketFactor, the more buckets will be used and thus // the more costly the histogram will become. A generally good trade-off // between cost and accuracy is a value of 1.1 (each bucket is at most // 10% wider than the previous one), which will result in each power of // two divided into 8 buckets (e.g. there will be 8 buckets between 1 // and 2, same as between 2 and 4, and 4 and 8, etc.). // // Details about the actually used factor: The factor is calculated as // 2^(2^-n), where n is an integer number between (and including) -4 and // 8. n is chosen so that the resulting factor is the largest that is // still smaller or equal to NativeHistogramBucketFactor. Note that the // smallest possible factor is therefore approx. 1.00271 (i.e. 2^(2^-8) // ). If NativeHistogramBucketFactor is greater than 1 but smaller than // 2^(2^-8), then the actually used factor is still 2^(2^-8) even though // it is larger than the provided NativeHistogramBucketFactor. // // NOTE: Native Histograms are still an experimental feature. Their // behavior might still change without a major version // bump. Subsequently, all NativeHistogram... options here might still // change their behavior or name (or might completely disappear) without // a major version bump. NativeHistogramBucketFactor float64 // All observations with an absolute value of less or equal // NativeHistogramZeroThreshold are accumulated into a “zero” bucket. // For best results, this should be close to a bucket boundary. This is // usually the case if picking a power of two. If // NativeHistogramZeroThreshold is left at zero, // DefNativeHistogramZeroThreshold is used as the threshold. To // configure a zero bucket with an actual threshold of zero (i.e. only // observations of precisely zero will go into the zero bucket), set // NativeHistogramZeroThreshold to the NativeHistogramZeroThresholdZero // constant (or any negative float value). NativeHistogramZeroThreshold float64 // The next three fields define a strategy to limit the number of // populated sparse buckets. If NativeHistogramMaxBucketNumber is left // at zero, the number of buckets is not limited. (Note that this might // lead to unbounded memory consumption if the values observed by the // Histogram are sufficiently wide-spread. In particular, this could be // used as a DoS attack vector. Where the observed values depend on // external inputs, it is highly recommended to set a // NativeHistogramMaxBucketNumber.) Once the set // NativeHistogramMaxBucketNumber is exceeded, the following strategy is // enacted: // - First, if the last reset (or the creation) of the histogram is at // least NativeHistogramMinResetDuration ago, then the whole // histogram is reset to its initial state (including regular // buckets). // - If less time has passed, or if NativeHistogramMinResetDuration is // zero, no reset is performed. Instead, the zero threshold is // increased sufficiently to reduce the number of buckets to or below // NativeHistogramMaxBucketNumber, but not to more than // NativeHistogramMaxZeroThreshold. Thus, if // NativeHistogramMaxZeroThreshold is already at or below the current // zero threshold, nothing happens at this step. // - After that, if the number of buckets still exceeds // NativeHistogramMaxBucketNumber, the resolution of the histogram is // reduced by doubling the width of the sparse buckets (up to a // growth factor between one bucket to the next of 2^(2^4) = 65536, // see above). // - Any increased zero threshold or reduced resolution is reset back // to their original values once NativeHistogramMinResetDuration has // passed (since the last reset or the creation of the histogram). NativeHistogramMaxBucketNumber uint32 NativeHistogramMinResetDuration time.Duration NativeHistogramMaxZeroThreshold float64 // NativeHistogramMaxExemplars limits the number of exemplars // that are kept in memory for each native histogram. If you leave it at // zero, a default value of 10 is used. If no exemplars should be kept specifically // for native histograms, set it to a negative value. (Scrapers can // still use the exemplars exposed for classic buckets, which are managed // independently.) NativeHistogramMaxExemplars int // NativeHistogramExemplarTTL is only checked once // NativeHistogramMaxExemplars is exceeded. In that case, the // oldest exemplar is removed if it is older than NativeHistogramExemplarTTL. // Otherwise, the older exemplar in the pair of exemplars that are closest // together (on an exponential scale) is removed. // If NativeHistogramExemplarTTL is left at its zero value, a default value of // 5m is used. To always delete the oldest exemplar, set it to a negative value. NativeHistogramExemplarTTL time.Duration // now is for testing purposes, by default it's time.Now. now func() time.Time // afterFunc is for testing purposes, by default it's time.AfterFunc. afterFunc func(time.Duration, func()) *time.Timer } // HistogramVecOpts bundles the options to create a HistogramVec metric. // It is mandatory to set HistogramOpts, see there for mandatory fields. VariableLabels // is optional and can safely be left to its default value. type HistogramVecOpts struct { HistogramOpts // VariableLabels are used to partition the metric vector by the given set // of labels. Each label value will be constrained with the optional Constraint // function, if provided. VariableLabels ConstrainableLabels } // NewHistogram creates a new Histogram based on the provided HistogramOpts. It // panics if the buckets in HistogramOpts are not in strictly increasing order. // // The returned implementation also implements ExemplarObserver. It is safe to // perform the corresponding type assertion. Exemplars are tracked separately // for each bucket. func NewHistogram(opts HistogramOpts) Histogram { return newHistogram( NewDesc( BuildFQName(opts.Namespace, opts.Subsystem, opts.Name), opts.Help, nil, opts.ConstLabels, ), opts, ) } func newHistogram(desc *Desc, opts HistogramOpts, labelValues ...string) Histogram { if len(desc.variableLabels.names) != len(labelValues) { panic(makeInconsistentCardinalityError(desc.fqName, desc.variableLabels.names, labelValues)) } for _, n := range desc.variableLabels.names { if n == bucketLabel { panic(errBucketLabelNotAllowed) } } for _, lp := range desc.constLabelPairs { if lp.GetName() == bucketLabel { panic(errBucketLabelNotAllowed) } } if opts.now == nil { opts.now = time.Now } if opts.afterFunc == nil { opts.afterFunc = time.AfterFunc } h := &histogram{ desc: desc, upperBounds: opts.Buckets, labelPairs: MakeLabelPairs(desc, labelValues), nativeHistogramMaxBuckets: opts.NativeHistogramMaxBucketNumber, nativeHistogramMaxZeroThreshold: opts.NativeHistogramMaxZeroThreshold, nativeHistogramMinResetDuration: opts.NativeHistogramMinResetDuration, lastResetTime: opts.now(), now: opts.now, afterFunc: opts.afterFunc, } if len(h.upperBounds) == 0 && opts.NativeHistogramBucketFactor <= 1 { h.upperBounds = DefBuckets } if opts.NativeHistogramBucketFactor <= 1 { h.nativeHistogramSchema = math.MinInt32 // To mark that there are no sparse buckets. } else { switch { case opts.NativeHistogramZeroThreshold > 0: h.nativeHistogramZeroThreshold = opts.NativeHistogramZeroThreshold case opts.NativeHistogramZeroThreshold == 0: h.nativeHistogramZeroThreshold = DefNativeHistogramZeroThreshold } // Leave h.nativeHistogramZeroThreshold at 0 otherwise. h.nativeHistogramSchema = pickSchema(opts.NativeHistogramBucketFactor) h.nativeExemplars = makeNativeExemplars(opts.NativeHistogramExemplarTTL, opts.NativeHistogramMaxExemplars) } for i, upperBound := range h.upperBounds { if i < len(h.upperBounds)-1 { if upperBound >= h.upperBounds[i+1] { panic(fmt.Errorf( "histogram buckets must be in increasing order: %f >= %f", upperBound, h.upperBounds[i+1], )) } } else { if math.IsInf(upperBound, +1) { // The +Inf bucket is implicit. Remove it here. h.upperBounds = h.upperBounds[:i] } } } // Finally we know the final length of h.upperBounds and can make buckets // for both counts as well as exemplars: h.counts[0] = &histogramCounts{buckets: make([]uint64, len(h.upperBounds))} atomic.StoreUint64(&h.counts[0].nativeHistogramZeroThresholdBits, math.Float64bits(h.nativeHistogramZeroThreshold)) atomic.StoreInt32(&h.counts[0].nativeHistogramSchema, h.nativeHistogramSchema) h.counts[1] = &histogramCounts{buckets: make([]uint64, len(h.upperBounds))} atomic.StoreUint64(&h.counts[1].nativeHistogramZeroThresholdBits, math.Float64bits(h.nativeHistogramZeroThreshold)) atomic.StoreInt32(&h.counts[1].nativeHistogramSchema, h.nativeHistogramSchema) h.exemplars = make([]atomic.Value, len(h.upperBounds)+1) h.init(h) // Init self-collection. return h } type histogramCounts struct { // Order in this struct matters for the alignment required by atomic // operations, see http://golang.org/pkg/sync/atomic/#pkg-note-BUG // sumBits contains the bits of the float64 representing the sum of all // observations. sumBits uint64 count uint64 // nativeHistogramZeroBucket counts all (positive and negative) // observations in the zero bucket (with an absolute value less or equal // the current threshold, see next field. nativeHistogramZeroBucket uint64 // nativeHistogramZeroThresholdBits is the bit pattern of the current // threshold for the zero bucket. It's initially equal to // nativeHistogramZeroThreshold but may change according to the bucket // count limitation strategy. nativeHistogramZeroThresholdBits uint64 // nativeHistogramSchema may change over time according to the bucket // count limitation strategy and therefore has to be saved here. nativeHistogramSchema int32 // Number of (positive and negative) sparse buckets. nativeHistogramBucketsNumber uint32 // Regular buckets. buckets []uint64 // The sparse buckets for native histograms are implemented with a // sync.Map for now. A dedicated data structure will likely be more // efficient. There are separate maps for negative and positive // observations. The map's value is an *int64, counting observations in // that bucket. (Note that we don't use uint64 as an int64 won't // overflow in practice, and working with signed numbers from the // beginning simplifies the handling of deltas.) The map's key is the // index of the bucket according to the used // nativeHistogramSchema. Index 0 is for an upper bound of 1. nativeHistogramBucketsPositive, nativeHistogramBucketsNegative sync.Map } // observe manages the parts of observe that only affects // histogramCounts. doSparse is true if sparse buckets should be done, // too. func (hc *histogramCounts) observe(v float64, bucket int, doSparse bool) { if bucket < len(hc.buckets) { atomic.AddUint64(&hc.buckets[bucket], 1) } atomicAddFloat(&hc.sumBits, v) if doSparse && !math.IsNaN(v) { var ( key int schema = atomic.LoadInt32(&hc.nativeHistogramSchema) zeroThreshold = math.Float64frombits(atomic.LoadUint64(&hc.nativeHistogramZeroThresholdBits)) bucketCreated, isInf bool ) if math.IsInf(v, 0) { // Pretend v is MaxFloat64 but later increment key by one. if math.IsInf(v, +1) { v = math.MaxFloat64 } else { v = -math.MaxFloat64 } isInf = true } frac, exp := math.Frexp(math.Abs(v)) if schema > 0 { bounds := nativeHistogramBounds[schema] key = sort.SearchFloat64s(bounds, frac) + (exp-1)*len(bounds) } else { key = exp if frac == 0.5 { key-- } offset := (1 << -schema) - 1 key = (key + offset) >> -schema } if isInf { key++ } switch { case v > zeroThreshold: bucketCreated = addToBucket(&hc.nativeHistogramBucketsPositive, key, 1) case v < -zeroThreshold: bucketCreated = addToBucket(&hc.nativeHistogramBucketsNegative, key, 1) default: atomic.AddUint64(&hc.nativeHistogramZeroBucket, 1) } if bucketCreated { atomic.AddUint32(&hc.nativeHistogramBucketsNumber, 1) } } // Increment count last as we take it as a signal that the observation // is complete. atomic.AddUint64(&hc.count, 1) } type histogram struct { // countAndHotIdx enables lock-free writes with use of atomic updates. // The most significant bit is the hot index [0 or 1] of the count field // below. Observe calls update the hot one. All remaining bits count the // number of Observe calls. Observe starts by incrementing this counter, // and finish by incrementing the count field in the respective // histogramCounts, as a marker for completion. // // Calls of the Write method (which are non-mutating reads from the // perspective of the histogram) swap the hot–cold under the writeMtx // lock. A cooldown is awaited (while locked) by comparing the number of // observations with the initiation count. Once they match, then the // last observation on the now cool one has completed. All cold fields must // be merged into the new hot before releasing writeMtx. // // Fields with atomic access first! See alignment constraint: // http://golang.org/pkg/sync/atomic/#pkg-note-BUG countAndHotIdx uint64 selfCollector desc *Desc // Only used in the Write method and for sparse bucket management. mtx sync.Mutex // Two counts, one is "hot" for lock-free observations, the other is // "cold" for writing out a dto.Metric. It has to be an array of // pointers to guarantee 64bit alignment of the histogramCounts, see // http://golang.org/pkg/sync/atomic/#pkg-note-BUG. counts [2]*histogramCounts upperBounds []float64 labelPairs []*dto.LabelPair exemplars []atomic.Value // One more than buckets (to include +Inf), each a *dto.Exemplar. nativeHistogramSchema int32 // The initial schema. Set to math.MinInt32 if no sparse buckets are used. nativeHistogramZeroThreshold float64 // The initial zero threshold. nativeHistogramMaxZeroThreshold float64 nativeHistogramMaxBuckets uint32 nativeHistogramMinResetDuration time.Duration // lastResetTime is protected by mtx. It is also used as created timestamp. lastResetTime time.Time // resetScheduled is protected by mtx. It is true if a reset is // scheduled for a later time (when nativeHistogramMinResetDuration has // passed). resetScheduled bool nativeExemplars nativeExemplars // now is for testing purposes, by default it's time.Now. now func() time.Time // afterFunc is for testing purposes, by default it's time.AfterFunc. afterFunc func(time.Duration, func()) *time.Timer } func (h *histogram) Desc() *Desc { return h.desc } func (h *histogram) Observe(v float64) { h.observe(v, h.findBucket(v)) } // ObserveWithExemplar should not be called in a high-frequency setting // for a native histogram with configured exemplars. For this case, // the implementation isn't lock-free and might suffer from lock contention. func (h *histogram) ObserveWithExemplar(v float64, e Labels) { i := h.findBucket(v) h.observe(v, i) h.updateExemplar(v, i, e) } func (h *histogram) Write(out *dto.Metric) error { // For simplicity, we protect this whole method by a mutex. It is not in // the hot path, i.e. Observe is called much more often than Write. The // complication of making Write lock-free isn't worth it, if possible at // all. h.mtx.Lock() defer h.mtx.Unlock() // Adding 1<<63 switches the hot index (from 0 to 1 or from 1 to 0) // without touching the count bits. See the struct comments for a full // description of the algorithm. n := atomic.AddUint64(&h.countAndHotIdx, 1<<63) // count is contained unchanged in the lower 63 bits. count := n & ((1 << 63) - 1) // The most significant bit tells us which counts is hot. The complement // is thus the cold one. hotCounts := h.counts[n>>63] coldCounts := h.counts[(^n)>>63] waitForCooldown(count, coldCounts) his := &dto.Histogram{ Bucket: make([]*dto.Bucket, len(h.upperBounds)), SampleCount: proto.Uint64(count), SampleSum: proto.Float64(math.Float64frombits(atomic.LoadUint64(&coldCounts.sumBits))), CreatedTimestamp: timestamppb.New(h.lastResetTime), } out.Histogram = his out.Label = h.labelPairs var cumCount uint64 for i, upperBound := range h.upperBounds { cumCount += atomic.LoadUint64(&coldCounts.buckets[i]) his.Bucket[i] = &dto.Bucket{ CumulativeCount: proto.Uint64(cumCount), UpperBound: proto.Float64(upperBound), } if e := h.exemplars[i].Load(); e != nil { his.Bucket[i].Exemplar = e.(*dto.Exemplar) } } // If there is an exemplar for the +Inf bucket, we have to add that bucket explicitly. if e := h.exemplars[len(h.upperBounds)].Load(); e != nil { b := &dto.Bucket{ CumulativeCount: proto.Uint64(count), UpperBound: proto.Float64(math.Inf(1)), Exemplar: e.(*dto.Exemplar), } his.Bucket = append(his.Bucket, b) } if h.nativeHistogramSchema > math.MinInt32 { his.ZeroThreshold = proto.Float64(math.Float64frombits(atomic.LoadUint64(&coldCounts.nativeHistogramZeroThresholdBits))) his.Schema = proto.Int32(atomic.LoadInt32(&coldCounts.nativeHistogramSchema)) zeroBucket := atomic.LoadUint64(&coldCounts.nativeHistogramZeroBucket) defer func() { coldCounts.nativeHistogramBucketsPositive.Range(addAndReset(&hotCounts.nativeHistogramBucketsPositive, &hotCounts.nativeHistogramBucketsNumber)) coldCounts.nativeHistogramBucketsNegative.Range(addAndReset(&hotCounts.nativeHistogramBucketsNegative, &hotCounts.nativeHistogramBucketsNumber)) }() his.ZeroCount = proto.Uint64(zeroBucket) his.NegativeSpan, his.NegativeDelta = makeBuckets(&coldCounts.nativeHistogramBucketsNegative) his.PositiveSpan, his.PositiveDelta = makeBuckets(&coldCounts.nativeHistogramBucketsPositive) // Add a no-op span to a histogram without observations and with // a zero threshold of zero. Otherwise, a native histogram would // look like a classic histogram to scrapers. if *his.ZeroThreshold == 0 && *his.ZeroCount == 0 && len(his.PositiveSpan) == 0 && len(his.NegativeSpan) == 0 { his.PositiveSpan = []*dto.BucketSpan{{ Offset: proto.Int32(0), Length: proto.Uint32(0), }} } if h.nativeExemplars.isEnabled() { h.nativeExemplars.Lock() his.Exemplars = append(his.Exemplars, h.nativeExemplars.exemplars...) h.nativeExemplars.Unlock() } } addAndResetCounts(hotCounts, coldCounts) return nil } // findBucket returns the index of the bucket for the provided value, or // len(h.upperBounds) for the +Inf bucket. func (h *histogram) findBucket(v float64) int { // TODO(beorn7): For small numbers of buckets (<30), a linear search is // slightly faster than the binary search. If we really care, we could // switch from one search strategy to the other depending on the number // of buckets. // // Microbenchmarks (BenchmarkHistogramNoLabels): // 11 buckets: 38.3 ns/op linear - binary 48.7 ns/op // 100 buckets: 78.1 ns/op linear - binary 54.9 ns/op // 300 buckets: 154 ns/op linear - binary 61.6 ns/op return sort.SearchFloat64s(h.upperBounds, v) } // observe is the implementation for Observe without the findBucket part. func (h *histogram) observe(v float64, bucket int) { // Do not add to sparse buckets for NaN observations. doSparse := h.nativeHistogramSchema > math.MinInt32 && !math.IsNaN(v) // We increment h.countAndHotIdx so that the counter in the lower // 63 bits gets incremented. At the same time, we get the new value // back, which we can use to find the currently-hot counts. n := atomic.AddUint64(&h.countAndHotIdx, 1) hotCounts := h.counts[n>>63] hotCounts.observe(v, bucket, doSparse) if doSparse { h.limitBuckets(hotCounts, v, bucket) } } // limitBuckets applies a strategy to limit the number of populated sparse // buckets. It's generally best effort, and there are situations where the // number can go higher (if even the lowest resolution isn't enough to reduce // the number sufficiently, or if the provided counts aren't fully updated yet // by a concurrently happening Write call). func (h *histogram) limitBuckets(counts *histogramCounts, value float64, bucket int) { if h.nativeHistogramMaxBuckets == 0 { return // No limit configured. } if h.nativeHistogramMaxBuckets >= atomic.LoadUint32(&counts.nativeHistogramBucketsNumber) { return // Bucket limit not exceeded yet. } h.mtx.Lock() defer h.mtx.Unlock() // The hot counts might have been swapped just before we acquired the // lock. Re-fetch the hot counts first... n := atomic.LoadUint64(&h.countAndHotIdx) hotIdx := n >> 63 coldIdx := (^n) >> 63 hotCounts := h.counts[hotIdx] coldCounts := h.counts[coldIdx] // ...and then check again if we really have to reduce the bucket count. if h.nativeHistogramMaxBuckets >= atomic.LoadUint32(&hotCounts.nativeHistogramBucketsNumber) { return // Bucket limit not exceeded after all. } // Try the various strategies in order. if h.maybeReset(hotCounts, coldCounts, coldIdx, value, bucket) { return } // One of the other strategies will happen. To undo what they will do as // soon as enough time has passed to satisfy // h.nativeHistogramMinResetDuration, schedule a reset at the right time // if we haven't done so already. if h.nativeHistogramMinResetDuration > 0 && !h.resetScheduled { h.resetScheduled = true h.afterFunc(h.nativeHistogramMinResetDuration-h.now().Sub(h.lastResetTime), h.reset) } if h.maybeWidenZeroBucket(hotCounts, coldCounts) { return } h.doubleBucketWidth(hotCounts, coldCounts) } // maybeReset resets the whole histogram if at least // h.nativeHistogramMinResetDuration has been passed. It returns true if the // histogram has been reset. The caller must have locked h.mtx. func (h *histogram) maybeReset( hot, cold *histogramCounts, coldIdx uint64, value float64, bucket int, ) bool { // We are using the possibly mocked h.now() rather than // time.Since(h.lastResetTime) to enable testing. if h.nativeHistogramMinResetDuration == 0 || // No reset configured. h.resetScheduled || // Do not interefere if a reset is already scheduled. h.now().Sub(h.lastResetTime) < h.nativeHistogramMinResetDuration { return false } // Completely reset coldCounts. h.resetCounts(cold) // Repeat the latest observation to not lose it completely. cold.observe(value, bucket, true) // Make coldCounts the new hot counts while resetting countAndHotIdx. n := atomic.SwapUint64(&h.countAndHotIdx, (coldIdx<<63)+1) count := n & ((1 << 63) - 1) waitForCooldown(count, hot) // Finally, reset the formerly hot counts, too. h.resetCounts(hot) h.lastResetTime = h.now() return true } // reset resets the whole histogram. It locks h.mtx itself, i.e. it has to be // called without having locked h.mtx. func (h *histogram) reset() { h.mtx.Lock() defer h.mtx.Unlock() n := atomic.LoadUint64(&h.countAndHotIdx) hotIdx := n >> 63 coldIdx := (^n) >> 63 hot := h.counts[hotIdx] cold := h.counts[coldIdx] // Completely reset coldCounts. h.resetCounts(cold) // Make coldCounts the new hot counts while resetting countAndHotIdx. n = atomic.SwapUint64(&h.countAndHotIdx, coldIdx<<63) count := n & ((1 << 63) - 1) waitForCooldown(count, hot) // Finally, reset the formerly hot counts, too. h.resetCounts(hot) h.lastResetTime = h.now() h.resetScheduled = false } // maybeWidenZeroBucket widens the zero bucket until it includes the existing // buckets closest to the zero bucket (which could be two, if an equidistant // negative and a positive bucket exists, but usually it's only one bucket to be // merged into the new wider zero bucket). h.nativeHistogramMaxZeroThreshold // limits how far the zero bucket can be extended, and if that's not enough to // include an existing bucket, the method returns false. The caller must have // locked h.mtx. func (h *histogram) maybeWidenZeroBucket(hot, cold *histogramCounts) bool { currentZeroThreshold := math.Float64frombits(atomic.LoadUint64(&hot.nativeHistogramZeroThresholdBits)) if currentZeroThreshold >= h.nativeHistogramMaxZeroThreshold { return false } // Find the key of the bucket closest to zero. smallestKey := findSmallestKey(&hot.nativeHistogramBucketsPositive) smallestNegativeKey := findSmallestKey(&hot.nativeHistogramBucketsNegative) if smallestNegativeKey < smallestKey { smallestKey = smallestNegativeKey } if smallestKey == math.MaxInt32 { return false } newZeroThreshold := getLe(smallestKey, atomic.LoadInt32(&hot.nativeHistogramSchema)) if newZeroThreshold > h.nativeHistogramMaxZeroThreshold { return false // New threshold would exceed the max threshold. } atomic.StoreUint64(&cold.nativeHistogramZeroThresholdBits, math.Float64bits(newZeroThreshold)) // Remove applicable buckets. if _, loaded := cold.nativeHistogramBucketsNegative.LoadAndDelete(smallestKey); loaded { atomicDecUint32(&cold.nativeHistogramBucketsNumber) } if _, loaded := cold.nativeHistogramBucketsPositive.LoadAndDelete(smallestKey); loaded { atomicDecUint32(&cold.nativeHistogramBucketsNumber) } // Make cold counts the new hot counts. n := atomic.AddUint64(&h.countAndHotIdx, 1<<63) count := n & ((1 << 63) - 1) // Swap the pointer names to represent the new roles and make // the rest less confusing. hot, cold = cold, hot waitForCooldown(count, cold) // Add all the now cold counts to the new hot counts... addAndResetCounts(hot, cold) // ...adjust the new zero threshold in the cold counts, too... atomic.StoreUint64(&cold.nativeHistogramZeroThresholdBits, math.Float64bits(newZeroThreshold)) // ...and then merge the newly deleted buckets into the wider zero // bucket. mergeAndDeleteOrAddAndReset := func(hotBuckets, coldBuckets *sync.Map) func(k, v interface{}) bool { return func(k, v interface{}) bool { key := k.(int) bucket := v.(*int64) if key == smallestKey { // Merge into hot zero bucket... atomic.AddUint64(&hot.nativeHistogramZeroBucket, uint64(atomic.LoadInt64(bucket))) // ...and delete from cold counts. coldBuckets.Delete(key) atomicDecUint32(&cold.nativeHistogramBucketsNumber) } else { // Add to corresponding hot bucket... if addToBucket(hotBuckets, key, atomic.LoadInt64(bucket)) { atomic.AddUint32(&hot.nativeHistogramBucketsNumber, 1) } // ...and reset cold bucket. atomic.StoreInt64(bucket, 0) } return true } } cold.nativeHistogramBucketsPositive.Range(mergeAndDeleteOrAddAndReset(&hot.nativeHistogramBucketsPositive, &cold.nativeHistogramBucketsPositive)) cold.nativeHistogramBucketsNegative.Range(mergeAndDeleteOrAddAndReset(&hot.nativeHistogramBucketsNegative, &cold.nativeHistogramBucketsNegative)) return true } // doubleBucketWidth doubles the bucket width (by decrementing the schema // number). Note that very sparse buckets could lead to a low reduction of the // bucket count (or even no reduction at all). The method does nothing if the // schema is already -4. func (h *histogram) doubleBucketWidth(hot, cold *histogramCounts) { coldSchema := atomic.LoadInt32(&cold.nativeHistogramSchema) if coldSchema == -4 { return // Already at lowest resolution. } coldSchema-- atomic.StoreInt32(&cold.nativeHistogramSchema, coldSchema) // Play it simple and just delete all cold buckets. atomic.StoreUint32(&cold.nativeHistogramBucketsNumber, 0) deleteSyncMap(&cold.nativeHistogramBucketsNegative) deleteSyncMap(&cold.nativeHistogramBucketsPositive) // Make coldCounts the new hot counts. n := atomic.AddUint64(&h.countAndHotIdx, 1<<63) count := n & ((1 << 63) - 1) // Swap the pointer names to represent the new roles and make // the rest less confusing. hot, cold = cold, hot waitForCooldown(count, cold) // Add all the now cold counts to the new hot counts... addAndResetCounts(hot, cold) // ...adjust the schema in the cold counts, too... atomic.StoreInt32(&cold.nativeHistogramSchema, coldSchema) // ...and then merge the cold buckets into the wider hot buckets. merge := func(hotBuckets *sync.Map) func(k, v interface{}) bool { return func(k, v interface{}) bool { key := k.(int) bucket := v.(*int64) // Adjust key to match the bucket to merge into. if key > 0 { key++ } key /= 2 // Add to corresponding hot bucket. if addToBucket(hotBuckets, key, atomic.LoadInt64(bucket)) { atomic.AddUint32(&hot.nativeHistogramBucketsNumber, 1) } return true } } cold.nativeHistogramBucketsPositive.Range(merge(&hot.nativeHistogramBucketsPositive)) cold.nativeHistogramBucketsNegative.Range(merge(&hot.nativeHistogramBucketsNegative)) // Play it simple again and just delete all cold buckets. atomic.StoreUint32(&cold.nativeHistogramBucketsNumber, 0) deleteSyncMap(&cold.nativeHistogramBucketsNegative) deleteSyncMap(&cold.nativeHistogramBucketsPositive) } func (h *histogram) resetCounts(counts *histogramCounts) { atomic.StoreUint64(&counts.sumBits, 0) atomic.StoreUint64(&counts.count, 0) atomic.StoreUint64(&counts.nativeHistogramZeroBucket, 0) atomic.StoreUint64(&counts.nativeHistogramZeroThresholdBits, math.Float64bits(h.nativeHistogramZeroThreshold)) atomic.StoreInt32(&counts.nativeHistogramSchema, h.nativeHistogramSchema) atomic.StoreUint32(&counts.nativeHistogramBucketsNumber, 0) for i := range h.upperBounds { atomic.StoreUint64(&counts.buckets[i], 0) } deleteSyncMap(&counts.nativeHistogramBucketsNegative) deleteSyncMap(&counts.nativeHistogramBucketsPositive) } // updateExemplar replaces the exemplar for the provided classic bucket. // With empty labels, it's a no-op. It panics if any of the labels is invalid. // If histogram is native, the exemplar will be cached into nativeExemplars, // which has a limit, and will remove one exemplar when limit is reached. func (h *histogram) updateExemplar(v float64, bucket int, l Labels) { if l == nil { return } e, err := newExemplar(v, h.now(), l) if err != nil { panic(err) } h.exemplars[bucket].Store(e) doSparse := h.nativeHistogramSchema > math.MinInt32 && !math.IsNaN(v) if doSparse { h.nativeExemplars.addExemplar(e) } } // HistogramVec is a Collector that bundles a set of Histograms that all share the // same Desc, but have different values for their variable labels. This is used // if you want to count the same thing partitioned by various dimensions // (e.g. HTTP request latencies, partitioned by status code and method). Create // instances with NewHistogramVec. type HistogramVec struct { *MetricVec } // NewHistogramVec creates a new HistogramVec based on the provided HistogramOpts and // partitioned by the given label names. func NewHistogramVec(opts HistogramOpts, labelNames []string) *HistogramVec { return V2.NewHistogramVec(HistogramVecOpts{ HistogramOpts: opts, VariableLabels: UnconstrainedLabels(labelNames), }) } // NewHistogramVec creates a new HistogramVec based on the provided HistogramVecOpts. func (v2) NewHistogramVec(opts HistogramVecOpts) *HistogramVec { desc := V2.NewDesc( BuildFQName(opts.Namespace, opts.Subsystem, opts.Name), opts.Help, opts.VariableLabels, opts.ConstLabels, ) return &HistogramVec{ MetricVec: NewMetricVec(desc, func(lvs ...string) Metric { return newHistogram(desc, opts.HistogramOpts, lvs...) }), } } // GetMetricWithLabelValues returns the Histogram for the given slice of label // values (same order as the variable labels in Desc). If that combination of // label values is accessed for the first time, a new Histogram is created. // // It is possible to call this method without using the returned Histogram to only // create the new Histogram but leave it at its starting value, a Histogram without // any observations. // // Keeping the Histogram for later use is possible (and should be considered if // performance is critical), but keep in mind that Reset, DeleteLabelValues and // Delete can be used to delete the Histogram from the HistogramVec. In that case, the // Histogram will still exist, but it will not be exported anymore, even if a // Histogram with the same label values is created later. See also the CounterVec // example. // // An error is returned if the number of label values is not the same as the // number of variable labels in Desc (minus any curried labels). // // Note that for more than one label value, this method is prone to mistakes // caused by an incorrect order of arguments. Consider GetMetricWith(Labels) as // an alternative to avoid that type of mistake. For higher label numbers, the // latter has a much more readable (albeit more verbose) syntax, but it comes // with a performance overhead (for creating and processing the Labels map). // See also the GaugeVec example. func (v *HistogramVec) GetMetricWithLabelValues(lvs ...string) (Observer, error) { metric, err := v.MetricVec.GetMetricWithLabelValues(lvs...) if metric != nil { return metric.(Observer), err } return nil, err } // GetMetricWith returns the Histogram for the given Labels map (the label names // must match those of the variable labels in Desc). If that label map is // accessed for the first time, a new Histogram is created. Implications of // creating a Histogram without using it and keeping the Histogram for later use // are the same as for GetMetricWithLabelValues. // // An error is returned if the number and names of the Labels are inconsistent // with those of the variable labels in Desc (minus any curried labels). // // This method is used for the same purpose as // GetMetricWithLabelValues(...string). See there for pros and cons of the two // methods. func (v *HistogramVec) GetMetricWith(labels Labels) (Observer, error) { metric, err := v.MetricVec.GetMetricWith(labels) if metric != nil { return metric.(Observer), err } return nil, err } // WithLabelValues works as GetMetricWithLabelValues, but panics where // GetMetricWithLabelValues would have returned an error. Not returning an // error allows shortcuts like // // myVec.WithLabelValues("404", "GET").Observe(42.21) func (v *HistogramVec) WithLabelValues(lvs ...string) Observer { h, err := v.GetMetricWithLabelValues(lvs...) if err != nil { panic(err) } return h } // With works as GetMetricWith but panics where GetMetricWithLabels would have // returned an error. Not returning an error allows shortcuts like // // myVec.With(prometheus.Labels{"code": "404", "method": "GET"}).Observe(42.21) func (v *HistogramVec) With(labels Labels) Observer { h, err := v.GetMetricWith(labels) if err != nil { panic(err) } return h } // CurryWith returns a vector curried with the provided labels, i.e. the // returned vector has those labels pre-set for all labeled operations performed // on it. The cardinality of the curried vector is reduced accordingly. The // order of the remaining labels stays the same (just with the curried labels // taken out of the sequence – which is relevant for the // (GetMetric)WithLabelValues methods). It is possible to curry a curried // vector, but only with labels not yet used for currying before. // // The metrics contained in the HistogramVec are shared between the curried and // uncurried vectors. They are just accessed differently. Curried and uncurried // vectors behave identically in terms of collection. Only one must be // registered with a given registry (usually the uncurried version). The Reset // method deletes all metrics, even if called on a curried vector. func (v *HistogramVec) CurryWith(labels Labels) (ObserverVec, error) { vec, err := v.MetricVec.CurryWith(labels) if vec != nil { return &HistogramVec{vec}, err } return nil, err } // MustCurryWith works as CurryWith but panics where CurryWith would have // returned an error. func (v *HistogramVec) MustCurryWith(labels Labels) ObserverVec { vec, err := v.CurryWith(labels) if err != nil { panic(err) } return vec } type constHistogram struct { desc *Desc count uint64 sum float64 buckets map[float64]uint64 labelPairs []*dto.LabelPair createdTs *timestamppb.Timestamp } func (h *constHistogram) Desc() *Desc { return h.desc } func (h *constHistogram) Write(out *dto.Metric) error { his := &dto.Histogram{ CreatedTimestamp: h.createdTs, } buckets := make([]*dto.Bucket, 0, len(h.buckets)) his.SampleCount = proto.Uint64(h.count) his.SampleSum = proto.Float64(h.sum) for upperBound, count := range h.buckets { buckets = append(buckets, &dto.Bucket{ CumulativeCount: proto.Uint64(count), UpperBound: proto.Float64(upperBound), }) } if len(buckets) > 0 { sort.Sort(buckSort(buckets)) } his.Bucket = buckets out.Histogram = his out.Label = h.labelPairs return nil } // NewConstHistogram returns a metric representing a Prometheus histogram with // fixed values for the count, sum, and bucket counts. As those parameters // cannot be changed, the returned value does not implement the Histogram // interface (but only the Metric interface). Users of this package will not // have much use for it in regular operations. However, when implementing custom // Collectors, it is useful as a throw-away metric that is generated on the fly // to send it to Prometheus in the Collect method. // // buckets is a map of upper bounds to cumulative counts, excluding the +Inf // bucket. The +Inf bucket is implicit, and its value is equal to the provided count. // // NewConstHistogram returns an error if the length of labelValues is not // consistent with the variable labels in Desc or if Desc is invalid. func NewConstHistogram( desc *Desc, count uint64, sum float64, buckets map[float64]uint64, labelValues ...string, ) (Metric, error) { if desc.err != nil { return nil, desc.err } if err := validateLabelValues(labelValues, len(desc.variableLabels.names)); err != nil { return nil, err } return &constHistogram{ desc: desc, count: count, sum: sum, buckets: buckets, labelPairs: MakeLabelPairs(desc, labelValues), }, nil } // MustNewConstHistogram is a version of NewConstHistogram that panics where // NewConstHistogram would have returned an error. func MustNewConstHistogram( desc *Desc, count uint64, sum float64, buckets map[float64]uint64, labelValues ...string, ) Metric { m, err := NewConstHistogram(desc, count, sum, buckets, labelValues...) if err != nil { panic(err) } return m } // NewConstHistogramWithCreatedTimestamp does the same thing as NewConstHistogram but sets the created timestamp. func NewConstHistogramWithCreatedTimestamp( desc *Desc, count uint64, sum float64, buckets map[float64]uint64, ct time.Time, labelValues ...string, ) (Metric, error) { if desc.err != nil { return nil, desc.err } if err := validateLabelValues(labelValues, len(desc.variableLabels.names)); err != nil { return nil, err } return &constHistogram{ desc: desc, count: count, sum: sum, buckets: buckets, labelPairs: MakeLabelPairs(desc, labelValues), createdTs: timestamppb.New(ct), }, nil } // MustNewConstHistogramWithCreatedTimestamp is a version of NewConstHistogramWithCreatedTimestamp that panics where // NewConstHistogramWithCreatedTimestamp would have returned an error. func MustNewConstHistogramWithCreatedTimestamp( desc *Desc, count uint64, sum float64, buckets map[float64]uint64, ct time.Time, labelValues ...string, ) Metric { m, err := NewConstHistogramWithCreatedTimestamp(desc, count, sum, buckets, ct, labelValues...) if err != nil { panic(err) } return m } type buckSort []*dto.Bucket func (s buckSort) Len() int { return len(s) } func (s buckSort) Swap(i, j int) { s[i], s[j] = s[j], s[i] } func (s buckSort) Less(i, j int) bool { return s[i].GetUpperBound() < s[j].GetUpperBound() } // pickSchema returns the largest number n between -4 and 8 such that // 2^(2^-n) is less or equal the provided bucketFactor. // // Special cases: // - bucketFactor <= 1: panics. // - bucketFactor < 2^(2^-8) (but > 1): still returns 8. func pickSchema(bucketFactor float64) int32 { if bucketFactor <= 1 { panic(fmt.Errorf("bucketFactor %f is <=1", bucketFactor)) } floor := math.Floor(math.Log2(math.Log2(bucketFactor))) switch { case floor <= -8: return 8 case floor >= 4: return -4 default: return -int32(floor) } } func makeBuckets(buckets *sync.Map) ([]*dto.BucketSpan, []int64) { var ii []int buckets.Range(func(k, v interface{}) bool { ii = append(ii, k.(int)) return true }) sort.Ints(ii) if len(ii) == 0 { return nil, nil } var ( spans []*dto.BucketSpan deltas []int64 prevCount int64 nextI int ) appendDelta := func(count int64) { *spans[len(spans)-1].Length++ deltas = append(deltas, count-prevCount) prevCount = count } for n, i := range ii { v, _ := buckets.Load(i) count := atomic.LoadInt64(v.(*int64)) // Multiple spans with only small gaps in between are probably // encoded more efficiently as one larger span with a few empty // buckets. Needs some research to find the sweet spot. For now, // we assume that gaps of one or two buckets should not create // a new span. iDelta := int32(i - nextI) if n == 0 || iDelta > 2 { // We have to create a new span, either because we are // at the very beginning, or because we have found a gap // of more than two buckets. spans = append(spans, &dto.BucketSpan{ Offset: proto.Int32(iDelta), Length: proto.Uint32(0), }) } else { // We have found a small gap (or no gap at all). // Insert empty buckets as needed. for j := int32(0); j < iDelta; j++ { appendDelta(0) } } appendDelta(count) nextI = i + 1 } return spans, deltas } // addToBucket increments the sparse bucket at key by the provided amount. It // returns true if a new sparse bucket had to be created for that. func addToBucket(buckets *sync.Map, key int, increment int64) bool { if existingBucket, ok := buckets.Load(key); ok { // Fast path without allocation. atomic.AddInt64(existingBucket.(*int64), increment) return false } // Bucket doesn't exist yet. Slow path allocating new counter. newBucket := increment // TODO(beorn7): Check if this is sufficient to not let increment escape. if actualBucket, loaded := buckets.LoadOrStore(key, &newBucket); loaded { // The bucket was created concurrently in another goroutine. // Have to increment after all. atomic.AddInt64(actualBucket.(*int64), increment) return false } return true } // addAndReset returns a function to be used with sync.Map.Range of spare // buckets in coldCounts. It increments the buckets in the provided hotBuckets // according to the buckets ranged through. It then resets all buckets ranged // through to 0 (but leaves them in place so that they don't need to get // recreated on the next scrape). func addAndReset(hotBuckets *sync.Map, bucketNumber *uint32) func(k, v interface{}) bool { return func(k, v interface{}) bool { bucket := v.(*int64) if addToBucket(hotBuckets, k.(int), atomic.LoadInt64(bucket)) { atomic.AddUint32(bucketNumber, 1) } atomic.StoreInt64(bucket, 0) return true } } func deleteSyncMap(m *sync.Map) { m.Range(func(k, v interface{}) bool { m.Delete(k) return true }) } func findSmallestKey(m *sync.Map) int { result := math.MaxInt32 m.Range(func(k, v interface{}) bool { key := k.(int) if key < result { result = key } return true }) return result } func getLe(key int, schema int32) float64 { // Here a bit of context about the behavior for the last bucket counting // regular numbers (called simply "last bucket" below) and the bucket // counting observations of ±Inf (called "inf bucket" below, with a key // one higher than that of the "last bucket"): // // If we apply the usual formula to the last bucket, its upper bound // would be calculated as +Inf. The reason is that the max possible // regular float64 number (math.MaxFloat64) doesn't coincide with one of // the calculated bucket boundaries. So the calculated boundary has to // be larger than math.MaxFloat64, and the only float64 larger than // math.MaxFloat64 is +Inf. However, we want to count actual // observations of ±Inf in the inf bucket. Therefore, we have to treat // the upper bound of the last bucket specially and set it to // math.MaxFloat64. (The upper bound of the inf bucket, with its key // being one higher than that of the last bucket, naturally comes out as // +Inf by the usual formula. So that's fine.) // // math.MaxFloat64 has a frac of 0.9999999999999999 and an exp of // 1024. If there were a float64 number following math.MaxFloat64, it // would have a frac of 1.0 and an exp of 1024, or equivalently a frac // of 0.5 and an exp of 1025. However, since frac must be smaller than // 1, and exp must be smaller than 1025, either representation overflows // a float64. (Which, in turn, is the reason that math.MaxFloat64 is the // largest possible float64. Q.E.D.) However, the formula for // calculating the upper bound from the idx and schema of the last // bucket results in precisely that. It is either frac=1.0 & exp=1024 // (for schema < 0) or frac=0.5 & exp=1025 (for schema >=0). (This is, // by the way, a power of two where the exponent itself is a power of // two, 2¹⁰ in fact, which coinicides with a bucket boundary in all // schemas.) So these are the special cases we have to catch below. if schema < 0 { exp := key << -schema if exp == 1024 { // This is the last bucket before the overflow bucket // (for ±Inf observations). Return math.MaxFloat64 as // explained above. return math.MaxFloat64 } return math.Ldexp(1, exp) } fracIdx := key & ((1 << schema) - 1) frac := nativeHistogramBounds[schema][fracIdx] exp := (key >> schema) + 1 if frac == 0.5 && exp == 1025 { // This is the last bucket before the overflow bucket (for ±Inf // observations). Return math.MaxFloat64 as explained above. return math.MaxFloat64 } return math.Ldexp(frac, exp) } // waitForCooldown returns after the count field in the provided histogramCounts // has reached the provided count value. func waitForCooldown(count uint64, counts *histogramCounts) { for count != atomic.LoadUint64(&counts.count) { runtime.Gosched() // Let observations get work done. } } // atomicAddFloat adds the provided float atomically to another float // represented by the bit pattern the bits pointer is pointing to. func atomicAddFloat(bits *uint64, v float64) { for { loadedBits := atomic.LoadUint64(bits) newBits := math.Float64bits(math.Float64frombits(loadedBits) + v) if atomic.CompareAndSwapUint64(bits, loadedBits, newBits) { break } } } // atomicDecUint32 atomically decrements the uint32 p points to. See // https://pkg.go.dev/sync/atomic#AddUint32 to understand how this is done. func atomicDecUint32(p *uint32) { atomic.AddUint32(p, ^uint32(0)) } // addAndResetCounts adds certain fields (count, sum, conventional buckets, zero // bucket) from the cold counts to the corresponding fields in the hot // counts. Those fields are then reset to 0 in the cold counts. func addAndResetCounts(hot, cold *histogramCounts) { atomic.AddUint64(&hot.count, atomic.LoadUint64(&cold.count)) atomic.StoreUint64(&cold.count, 0) coldSum := math.Float64frombits(atomic.LoadUint64(&cold.sumBits)) atomicAddFloat(&hot.sumBits, coldSum) atomic.StoreUint64(&cold.sumBits, 0) for i := range hot.buckets { atomic.AddUint64(&hot.buckets[i], atomic.LoadUint64(&cold.buckets[i])) atomic.StoreUint64(&cold.buckets[i], 0) } atomic.AddUint64(&hot.nativeHistogramZeroBucket, atomic.LoadUint64(&cold.nativeHistogramZeroBucket)) atomic.StoreUint64(&cold.nativeHistogramZeroBucket, 0) } type nativeExemplars struct { sync.Mutex // Time-to-live for exemplars, it is set to -1 if exemplars are disabled, that is NativeHistogramMaxExemplars is below 0. // The ttl is used on insertion to remove an exemplar that is older than ttl, if present. ttl time.Duration exemplars []*dto.Exemplar } func (n *nativeExemplars) isEnabled() bool { return n.ttl != -1 } func makeNativeExemplars(ttl time.Duration, maxCount int) nativeExemplars { if ttl == 0 { ttl = 5 * time.Minute } if maxCount == 0 { maxCount = 10 } if maxCount < 0 { maxCount = 0 ttl = -1 } return nativeExemplars{ ttl: ttl, exemplars: make([]*dto.Exemplar, 0, maxCount), } } func (n *nativeExemplars) addExemplar(e *dto.Exemplar) { if !n.isEnabled() { return } n.Lock() defer n.Unlock() // When the number of exemplars has not yet exceeded or // is equal to cap(n.exemplars), then // insert the new exemplar directly. if len(n.exemplars) < cap(n.exemplars) { var nIdx int for nIdx = 0; nIdx < len(n.exemplars); nIdx++ { if *e.Value < *n.exemplars[nIdx].Value { break } } n.exemplars = append(n.exemplars[:nIdx], append([]*dto.Exemplar{e}, n.exemplars[nIdx:]...)...) return } if len(n.exemplars) == 1 { // When the number of exemplars is 1, then // replace the existing exemplar with the new exemplar. n.exemplars[0] = e return } // From this point on, the number of exemplars is greater than 1. // When the number of exemplars exceeds the limit, remove one exemplar. var ( ot = time.Time{} // Oldest timestamp seen. Initial value doesn't matter as we replace it due to otIdx == -1 in the loop. otIdx = -1 // Index of the exemplar with the oldest timestamp. md = -1.0 // Logarithm of the delta of the closest pair of exemplars. // The insertion point of the new exemplar in the exemplars slice after insertion. // This is calculated purely based on the order of the exemplars by value. // nIdx == len(n.exemplars) means the new exemplar is to be inserted after the end. nIdx = -1 // rIdx is ultimately the index for the exemplar that we are replacing with the new exemplar. // The aim is to keep a good spread of exemplars by value and not let them bunch up too much. // It is calculated in 3 steps: // 1. First we set rIdx to the index of the older exemplar within the closest pair by value. // That is the following will be true (on log scale): // either the exemplar pair on index (rIdx-1, rIdx) or (rIdx, rIdx+1) will have // the closest values to each other from all pairs. // For example, suppose the values are distributed like this: // |-----------x-------------x----------------x----x-----| // ^--rIdx as this is older. // Or like this: // |-----------x-------------x----------------x----x-----| // ^--rIdx as this is older. // 2. If there is an exemplar that expired, then we simple reset rIdx to that index. // 3. We check if by inserting the new exemplar we would create a closer pair at // (nIdx-1, nIdx) or (nIdx, nIdx+1) and set rIdx to nIdx-1 or nIdx accordingly to // keep the spread of exemplars by value; otherwise we keep rIdx as it is. rIdx = -1 cLog float64 // Logarithm of the current exemplar. pLog float64 // Logarithm of the previous exemplar. ) for i, exemplar := range n.exemplars { // Find the exemplar with the oldest timestamp. if otIdx == -1 || exemplar.Timestamp.AsTime().Before(ot) { ot = exemplar.Timestamp.AsTime() otIdx = i } // Find the index at which to insert new the exemplar. if nIdx == -1 && *e.Value <= *exemplar.Value { nIdx = i } // Find the two closest exemplars and pick the one the with older timestamp. pLog = cLog cLog = math.Log(exemplar.GetValue()) if i == 0 { continue } diff := math.Abs(cLog - pLog) if md == -1 || diff < md { // The closest exemplar pair is at index: i-1, i. // Choose the exemplar with the older timestamp for replacement. md = diff if n.exemplars[i].Timestamp.AsTime().Before(n.exemplars[i-1].Timestamp.AsTime()) { rIdx = i } else { rIdx = i - 1 } } } // If all existing exemplar are smaller than new exemplar, // then the exemplar should be inserted at the end. if nIdx == -1 { nIdx = len(n.exemplars) } // Here, we have the following relationships: // n.exemplars[nIdx-1].Value < e.Value (if nIdx > 0) // e.Value <= n.exemplars[nIdx].Value (if nIdx < len(n.exemplars)) if otIdx != -1 && e.Timestamp.AsTime().Sub(ot) > n.ttl { // If the oldest exemplar has expired, then replace it with the new exemplar. rIdx = otIdx } else { // In the previous for loop, when calculating the closest pair of exemplars, // we did not take into account the newly inserted exemplar. // So we need to calculate with the newly inserted exemplar again. elog := math.Log(e.GetValue()) if nIdx > 0 { diff := math.Abs(elog - math.Log(n.exemplars[nIdx-1].GetValue())) if diff < md { // The value we are about to insert is closer to the previous exemplar at the insertion point than what we calculated before in rIdx. // v--rIdx // |-----------x-n-----------x----------------x----x-----| // nIdx-1--^ ^--new exemplar value // Do not make the spread worse, replace nIdx-1 and not rIdx. md = diff rIdx = nIdx - 1 } } if nIdx < len(n.exemplars) { diff := math.Abs(math.Log(n.exemplars[nIdx].GetValue()) - elog) if diff < md { // The value we are about to insert is closer to the next exemplar at the insertion point than what we calculated before in rIdx. // v--rIdx // |-----------x-----------n-x----------------x----x-----| // new exemplar value--^ ^--nIdx // Do not make the spread worse, replace nIdx-1 and not rIdx. rIdx = nIdx } } } // Adjust the slice according to rIdx and nIdx. switch { case rIdx == nIdx: n.exemplars[nIdx] = e case rIdx < nIdx: n.exemplars = append(n.exemplars[:rIdx], append(n.exemplars[rIdx+1:nIdx], append([]*dto.Exemplar{e}, n.exemplars[nIdx:]...)...)...) case rIdx > nIdx: n.exemplars = append(n.exemplars[:nIdx], append([]*dto.Exemplar{e}, append(n.exemplars[nIdx:rIdx], n.exemplars[rIdx+1:]...)...)...) } }