// Copyright 2015 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package prometheus import ( "math" "math/rand" "reflect" "runtime" "sort" "sync" "sync/atomic" "testing" "testing/quick" "time" "github.com/prometheus/client_golang/prometheus/internal" dto "github.com/prometheus/client_model/go" "google.golang.org/protobuf/proto" "google.golang.org/protobuf/types/known/timestamppb" ) func benchmarkHistogramObserve(w int, b *testing.B) { b.StopTimer() wg := new(sync.WaitGroup) wg.Add(w) g := new(sync.WaitGroup) g.Add(1) s := NewHistogram(HistogramOpts{}) for i := 0; i < w; i++ { go func() { g.Wait() for i := 0; i < b.N; i++ { s.Observe(float64(i)) } wg.Done() }() } b.StartTimer() g.Done() wg.Wait() } func BenchmarkHistogramObserve1(b *testing.B) { benchmarkHistogramObserve(1, b) } func BenchmarkHistogramObserve2(b *testing.B) { benchmarkHistogramObserve(2, b) } func BenchmarkHistogramObserve4(b *testing.B) { benchmarkHistogramObserve(4, b) } func BenchmarkHistogramObserve8(b *testing.B) { benchmarkHistogramObserve(8, b) } func benchmarkHistogramWrite(w int, b *testing.B) { b.StopTimer() wg := new(sync.WaitGroup) wg.Add(w) g := new(sync.WaitGroup) g.Add(1) s := NewHistogram(HistogramOpts{}) for i := 0; i < 1000000; i++ { s.Observe(float64(i)) } for j := 0; j < w; j++ { outs := make([]dto.Metric, b.N) go func(o []dto.Metric) { g.Wait() for i := 0; i < b.N; i++ { s.Write(&o[i]) } wg.Done() }(outs) } b.StartTimer() g.Done() wg.Wait() } func BenchmarkHistogramWrite1(b *testing.B) { benchmarkHistogramWrite(1, b) } func BenchmarkHistogramWrite2(b *testing.B) { benchmarkHistogramWrite(2, b) } func BenchmarkHistogramWrite4(b *testing.B) { benchmarkHistogramWrite(4, b) } func BenchmarkHistogramWrite8(b *testing.B) { benchmarkHistogramWrite(8, b) } func TestHistogramNonMonotonicBuckets(t *testing.T) { testCases := map[string][]float64{ "not strictly monotonic": {1, 2, 2, 3}, "not monotonic at all": {1, 2, 4, 3, 5}, "have +Inf in the middle": {1, 2, math.Inf(+1), 3}, } for name, buckets := range testCases { func() { defer func() { if r := recover(); r == nil { t.Errorf("Buckets %v are %s but NewHistogram did not panic.", buckets, name) } }() _ = NewHistogram(HistogramOpts{ Name: "test_histogram", Help: "helpless", Buckets: buckets, }) }() } } // Intentionally adding +Inf here to test if that case is handled correctly. // Also, getCumulativeCounts depends on it. var testBuckets = []float64{-2, -1, -0.5, 0, 0.5, 1, 2, math.Inf(+1)} func TestHistogramConcurrency(t *testing.T) { if testing.Short() { t.Skip("Skipping test in short mode.") } rand.Seed(42) it := func(n uint32) bool { mutations := int(n%1e4 + 1e4) concLevel := int(n%5 + 1) total := mutations * concLevel var start, end sync.WaitGroup start.Add(1) end.Add(concLevel) his := NewHistogram(HistogramOpts{ Name: "test_histogram", Help: "helpless", Buckets: testBuckets, }) allVars := make([]float64, total) var sampleSum float64 for i := 0; i < concLevel; i++ { vals := make([]float64, mutations) for j := 0; j < mutations; j++ { v := rand.NormFloat64() vals[j] = v allVars[i*mutations+j] = v sampleSum += v } go func(vals []float64) { start.Wait() for _, v := range vals { if n%2 == 0 { his.Observe(v) } else { his.(ExemplarObserver).ObserveWithExemplar(v, Labels{"foo": "bar"}) } } end.Done() }(vals) } sort.Float64s(allVars) start.Done() end.Wait() m := &dto.Metric{} his.Write(m) if got, want := int(*m.Histogram.SampleCount), total; got != want { t.Errorf("got sample count %d, want %d", got, want) } if got, want := *m.Histogram.SampleSum, sampleSum; math.Abs((got-want)/want) > 0.001 { t.Errorf("got sample sum %f, want %f", got, want) } wantCounts := getCumulativeCounts(allVars) wantBuckets := len(testBuckets) if !math.IsInf(m.Histogram.Bucket[len(m.Histogram.Bucket)-1].GetUpperBound(), +1) { wantBuckets-- } if got := len(m.Histogram.Bucket); got != wantBuckets { t.Errorf("got %d buckets in protobuf, want %d", got, wantBuckets) } for i, wantBound := range testBuckets { if i == len(testBuckets)-1 { break // No +Inf bucket in protobuf. } if gotBound := *m.Histogram.Bucket[i].UpperBound; gotBound != wantBound { t.Errorf("got bound %f, want %f", gotBound, wantBound) } if gotCount, wantCount := *m.Histogram.Bucket[i].CumulativeCount, wantCounts[i]; gotCount != wantCount { t.Errorf("got count %d, want %d", gotCount, wantCount) } } return true } if err := quick.Check(it, nil); err != nil { t.Error(err) } } func TestHistogramVecConcurrency(t *testing.T) { if testing.Short() { t.Skip("Skipping test in short mode.") } rand.Seed(42) it := func(n uint32) bool { mutations := int(n%1e4 + 1e4) concLevel := int(n%7 + 1) vecLength := int(n%3 + 1) var start, end sync.WaitGroup start.Add(1) end.Add(concLevel) his := NewHistogramVec( HistogramOpts{ Name: "test_histogram", Help: "helpless", Buckets: []float64{-2, -1, -0.5, 0, 0.5, 1, 2, math.Inf(+1)}, }, []string{"label"}, ) allVars := make([][]float64, vecLength) sampleSums := make([]float64, vecLength) for i := 0; i < concLevel; i++ { vals := make([]float64, mutations) picks := make([]int, mutations) for j := 0; j < mutations; j++ { v := rand.NormFloat64() vals[j] = v pick := rand.Intn(vecLength) picks[j] = pick allVars[pick] = append(allVars[pick], v) sampleSums[pick] += v } go func(vals []float64) { start.Wait() for i, v := range vals { his.WithLabelValues(string('A' + rune(picks[i]))).Observe(v) } end.Done() }(vals) } for _, vars := range allVars { sort.Float64s(vars) } start.Done() end.Wait() for i := 0; i < vecLength; i++ { m := &dto.Metric{} s := his.WithLabelValues(string('A' + rune(i))) s.(Histogram).Write(m) if got, want := len(m.Histogram.Bucket), len(testBuckets)-1; got != want { t.Errorf("got %d buckets in protobuf, want %d", got, want) } if got, want := int(*m.Histogram.SampleCount), len(allVars[i]); got != want { t.Errorf("got sample count %d, want %d", got, want) } if got, want := *m.Histogram.SampleSum, sampleSums[i]; math.Abs((got-want)/want) > 0.001 { t.Errorf("got sample sum %f, want %f", got, want) } wantCounts := getCumulativeCounts(allVars[i]) for j, wantBound := range testBuckets { if j == len(testBuckets)-1 { break // No +Inf bucket in protobuf. } if gotBound := *m.Histogram.Bucket[j].UpperBound; gotBound != wantBound { t.Errorf("got bound %f, want %f", gotBound, wantBound) } if gotCount, wantCount := *m.Histogram.Bucket[j].CumulativeCount, wantCounts[j]; gotCount != wantCount { t.Errorf("got count %d, want %d", gotCount, wantCount) } } } return true } if err := quick.Check(it, nil); err != nil { t.Error(err) } } func getCumulativeCounts(vars []float64) []uint64 { counts := make([]uint64, len(testBuckets)) for _, v := range vars { for i := len(testBuckets) - 1; i >= 0; i-- { if v > testBuckets[i] { break } counts[i]++ } } return counts } func TestBuckets(t *testing.T) { got := LinearBuckets(-15, 5, 6) want := []float64{-15, -10, -5, 0, 5, 10} if !reflect.DeepEqual(got, want) { t.Errorf("linear buckets: got %v, want %v", got, want) } got = ExponentialBuckets(100, 1.2, 3) want = []float64{100, 120, 144} if !reflect.DeepEqual(got, want) { t.Errorf("exponential buckets: got %v, want %v", got, want) } got = ExponentialBucketsRange(1, 100, 10) want = []float64{ 1.0, 1.6681, 2.7825, 4.6415, 7.7426, 12.9154, 21.5443, 35.9381, 59.9484, 100.0000, } const epsilon = 0.0001 if !internal.AlmostEqualFloat64s(got, want, epsilon) { t.Errorf("exponential buckets range: got %v, want %v (epsilon %f)", got, want, epsilon) } } func TestHistogramAtomicObserve(t *testing.T) { var ( quit = make(chan struct{}) his = NewHistogram(HistogramOpts{ Buckets: []float64{0.5, 10, 20}, }) ) defer func() { close(quit) }() observe := func() { for { select { case <-quit: return default: his.Observe(1) } } } go observe() go observe() go observe() for i := 0; i < 100; i++ { m := &dto.Metric{} if err := his.Write(m); err != nil { t.Fatal("unexpected error writing histogram:", err) } h := m.GetHistogram() if h.GetSampleCount() != uint64(h.GetSampleSum()) || h.GetSampleCount() != h.GetBucket()[1].GetCumulativeCount() || h.GetSampleCount() != h.GetBucket()[2].GetCumulativeCount() { t.Fatalf( "inconsistent counts in histogram: count=%d sum=%f buckets=[%d, %d]", h.GetSampleCount(), h.GetSampleSum(), h.GetBucket()[1].GetCumulativeCount(), h.GetBucket()[2].GetCumulativeCount(), ) } runtime.Gosched() } } func TestHistogramExemplar(t *testing.T) { now := time.Now() histogram := NewHistogram(HistogramOpts{ Name: "test", Help: "test help", Buckets: []float64{1, 2, 3, 4}, }).(*histogram) histogram.now = func() time.Time { return now } ts := timestamppb.New(now) if err := ts.CheckValid(); err != nil { t.Fatal(err) } expectedExemplars := []*dto.Exemplar{ nil, { Label: []*dto.LabelPair{ {Name: proto.String("id"), Value: proto.String("2")}, }, Value: proto.Float64(1.6), Timestamp: ts, }, nil, { Label: []*dto.LabelPair{ {Name: proto.String("id"), Value: proto.String("3")}, }, Value: proto.Float64(4), Timestamp: ts, }, { Label: []*dto.LabelPair{ {Name: proto.String("id"), Value: proto.String("4")}, }, Value: proto.Float64(4.5), Timestamp: ts, }, } histogram.ObserveWithExemplar(1.5, Labels{"id": "1"}) histogram.ObserveWithExemplar(1.6, Labels{"id": "2"}) // To replace exemplar in bucket 0. histogram.ObserveWithExemplar(4, Labels{"id": "3"}) histogram.ObserveWithExemplar(4.5, Labels{"id": "4"}) // Should go to +Inf bucket. for i, ex := range histogram.exemplars { var got, expected string if val := ex.Load(); val != nil { got = val.(*dto.Exemplar).String() } if expectedExemplars[i] != nil { expected = expectedExemplars[i].String() } if got != expected { t.Errorf("expected exemplar %s, got %s.", expected, got) } } } func TestNativeHistogram(t *testing.T) { scenarios := []struct { name string observations []float64 // With simulated interval of 1m. factor float64 zeroThreshold float64 maxBuckets uint32 minResetDuration time.Duration maxZeroThreshold float64 want *dto.Histogram }{ { name: "no sparse buckets", observations: []float64{1, 2, 3}, factor: 1, want: &dto.Histogram{ SampleCount: proto.Uint64(3), SampleSum: proto.Float64(6), Bucket: []*dto.Bucket{ {CumulativeCount: proto.Uint64(0), UpperBound: proto.Float64(0.005)}, {CumulativeCount: proto.Uint64(0), UpperBound: proto.Float64(0.01)}, {CumulativeCount: proto.Uint64(0), UpperBound: proto.Float64(0.025)}, {CumulativeCount: proto.Uint64(0), UpperBound: proto.Float64(0.05)}, {CumulativeCount: proto.Uint64(0), UpperBound: proto.Float64(0.1)}, {CumulativeCount: proto.Uint64(0), UpperBound: proto.Float64(0.25)}, {CumulativeCount: proto.Uint64(0), UpperBound: proto.Float64(0.5)}, {CumulativeCount: proto.Uint64(1), UpperBound: proto.Float64(1)}, {CumulativeCount: proto.Uint64(2), UpperBound: proto.Float64(2.5)}, {CumulativeCount: proto.Uint64(3), UpperBound: proto.Float64(5)}, {CumulativeCount: proto.Uint64(3), UpperBound: proto.Float64(10)}, }, }, }, { name: "no observations", factor: 1.1, want: &dto.Histogram{ SampleCount: proto.Uint64(0), SampleSum: proto.Float64(0), Schema: proto.Int32(3), ZeroThreshold: proto.Float64(2.938735877055719e-39), ZeroCount: proto.Uint64(0), }, }, { name: "no observations and zero threshold of zero resulting in no-op span", factor: 1.1, zeroThreshold: NativeHistogramZeroThresholdZero, want: &dto.Histogram{ SampleCount: proto.Uint64(0), SampleSum: proto.Float64(0), Schema: proto.Int32(3), ZeroThreshold: proto.Float64(0), ZeroCount: proto.Uint64(0), PositiveSpan: []*dto.BucketSpan{ {Offset: proto.Int32(0), Length: proto.Uint32(0)}, }, }, }, { name: "factor 1.1 results in schema 3", observations: []float64{0, 1, 2, 3}, factor: 1.1, want: &dto.Histogram{ SampleCount: proto.Uint64(4), SampleSum: proto.Float64(6), Schema: proto.Int32(3), ZeroThreshold: proto.Float64(2.938735877055719e-39), ZeroCount: proto.Uint64(1), PositiveSpan: []*dto.BucketSpan{ {Offset: proto.Int32(0), Length: proto.Uint32(1)}, {Offset: proto.Int32(7), Length: proto.Uint32(1)}, {Offset: proto.Int32(4), Length: proto.Uint32(1)}, }, PositiveDelta: []int64{1, 0, 0}, }, }, { name: "factor 1.2 results in schema 2", observations: []float64{0, 1, 1.2, 1.4, 1.8, 2}, factor: 1.2, want: &dto.Histogram{ SampleCount: proto.Uint64(6), SampleSum: proto.Float64(7.4), Schema: proto.Int32(2), ZeroThreshold: proto.Float64(2.938735877055719e-39), ZeroCount: proto.Uint64(1), PositiveSpan: []*dto.BucketSpan{ {Offset: proto.Int32(0), Length: proto.Uint32(5)}, }, PositiveDelta: []int64{1, -1, 2, -2, 2}, }, }, { name: "factor 4 results in schema -1", observations: []float64{ 0.0156251, 0.0625, // Bucket -2: (0.015625, 0.0625) 0.1, 0.25, // Bucket -1: (0.0625, 0.25] 0.5, 1, // Bucket 0: (0.25, 1] 1.5, 2, 3, 3.5, // Bucket 1: (1, 4] 5, 6, 7, // Bucket 2: (4, 16] 33.33, // Bucket 3: (16, 64] }, factor: 4, want: &dto.Histogram{ SampleCount: proto.Uint64(14), SampleSum: proto.Float64(63.2581251), Schema: proto.Int32(-1), ZeroThreshold: proto.Float64(2.938735877055719e-39), ZeroCount: proto.Uint64(0), PositiveSpan: []*dto.BucketSpan{ {Offset: proto.Int32(-2), Length: proto.Uint32(6)}, }, PositiveDelta: []int64{2, 0, 0, 2, -1, -2}, }, }, { name: "factor 17 results in schema -2", observations: []float64{ 0.0156251, 0.0625, // Bucket -1: (0.015625, 0.0625] 0.1, 0.25, 0.5, 1, // Bucket 0: (0.0625, 1] 1.5, 2, 3, 3.5, 5, 6, 7, // Bucket 1: (1, 16] 33.33, // Bucket 2: (16, 256] }, factor: 17, want: &dto.Histogram{ SampleCount: proto.Uint64(14), SampleSum: proto.Float64(63.2581251), Schema: proto.Int32(-2), ZeroThreshold: proto.Float64(2.938735877055719e-39), ZeroCount: proto.Uint64(0), PositiveSpan: []*dto.BucketSpan{ {Offset: proto.Int32(-1), Length: proto.Uint32(4)}, }, PositiveDelta: []int64{2, 2, 3, -6}, }, }, { name: "negative buckets", observations: []float64{0, -1, -1.2, -1.4, -1.8, -2}, factor: 1.2, want: &dto.Histogram{ SampleCount: proto.Uint64(6), SampleSum: proto.Float64(-7.4), Schema: proto.Int32(2), ZeroThreshold: proto.Float64(2.938735877055719e-39), ZeroCount: proto.Uint64(1), NegativeSpan: []*dto.BucketSpan{ {Offset: proto.Int32(0), Length: proto.Uint32(5)}, }, NegativeDelta: []int64{1, -1, 2, -2, 2}, }, }, { name: "negative and positive buckets", observations: []float64{0, -1, -1.2, -1.4, -1.8, -2, 1, 1.2, 1.4, 1.8, 2}, factor: 1.2, want: &dto.Histogram{ SampleCount: proto.Uint64(11), SampleSum: proto.Float64(0), Schema: proto.Int32(2), ZeroThreshold: proto.Float64(2.938735877055719e-39), ZeroCount: proto.Uint64(1), NegativeSpan: []*dto.BucketSpan{ {Offset: proto.Int32(0), Length: proto.Uint32(5)}, }, NegativeDelta: []int64{1, -1, 2, -2, 2}, PositiveSpan: []*dto.BucketSpan{ {Offset: proto.Int32(0), Length: proto.Uint32(5)}, }, PositiveDelta: []int64{1, -1, 2, -2, 2}, }, }, { name: "wide zero bucket", observations: []float64{0, -1, -1.2, -1.4, -1.8, -2, 1, 1.2, 1.4, 1.8, 2}, factor: 1.2, zeroThreshold: 1.4, want: &dto.Histogram{ SampleCount: proto.Uint64(11), SampleSum: proto.Float64(0), Schema: proto.Int32(2), ZeroThreshold: proto.Float64(1.4), ZeroCount: proto.Uint64(7), NegativeSpan: []*dto.BucketSpan{ {Offset: proto.Int32(4), Length: proto.Uint32(1)}, }, NegativeDelta: []int64{2}, PositiveSpan: []*dto.BucketSpan{ {Offset: proto.Int32(4), Length: proto.Uint32(1)}, }, PositiveDelta: []int64{2}, }, }, { name: "NaN observation", observations: []float64{0, 1, 1.2, 1.4, 1.8, 2, math.NaN()}, factor: 1.2, want: &dto.Histogram{ SampleCount: proto.Uint64(7), SampleSum: proto.Float64(math.NaN()), Schema: proto.Int32(2), ZeroThreshold: proto.Float64(2.938735877055719e-39), ZeroCount: proto.Uint64(1), PositiveSpan: []*dto.BucketSpan{ {Offset: proto.Int32(0), Length: proto.Uint32(5)}, }, PositiveDelta: []int64{1, -1, 2, -2, 2}, }, }, { name: "+Inf observation", observations: []float64{0, 1, 1.2, 1.4, 1.8, 2, math.Inf(+1)}, factor: 1.2, want: &dto.Histogram{ SampleCount: proto.Uint64(7), SampleSum: proto.Float64(math.Inf(+1)), Schema: proto.Int32(2), ZeroThreshold: proto.Float64(2.938735877055719e-39), ZeroCount: proto.Uint64(1), PositiveSpan: []*dto.BucketSpan{ {Offset: proto.Int32(0), Length: proto.Uint32(5)}, {Offset: proto.Int32(4092), Length: proto.Uint32(1)}, }, PositiveDelta: []int64{1, -1, 2, -2, 2, -1}, }, }, { name: "-Inf observation", observations: []float64{0, 1, 1.2, 1.4, 1.8, 2, math.Inf(-1)}, factor: 1.2, want: &dto.Histogram{ SampleCount: proto.Uint64(7), SampleSum: proto.Float64(math.Inf(-1)), Schema: proto.Int32(2), ZeroThreshold: proto.Float64(2.938735877055719e-39), ZeroCount: proto.Uint64(1), NegativeSpan: []*dto.BucketSpan{ {Offset: proto.Int32(4097), Length: proto.Uint32(1)}, }, NegativeDelta: []int64{1}, PositiveSpan: []*dto.BucketSpan{ {Offset: proto.Int32(0), Length: proto.Uint32(5)}, }, PositiveDelta: []int64{1, -1, 2, -2, 2}, }, }, { name: "limited buckets but nothing triggered", observations: []float64{0, 1, 1.2, 1.4, 1.8, 2}, factor: 1.2, maxBuckets: 4, want: &dto.Histogram{ SampleCount: proto.Uint64(6), SampleSum: proto.Float64(7.4), Schema: proto.Int32(2), ZeroThreshold: proto.Float64(2.938735877055719e-39), ZeroCount: proto.Uint64(1), PositiveSpan: []*dto.BucketSpan{ {Offset: proto.Int32(0), Length: proto.Uint32(5)}, }, PositiveDelta: []int64{1, -1, 2, -2, 2}, }, }, { name: "buckets limited by halving resolution", observations: []float64{0, 1, 1.1, 1.2, 1.4, 1.8, 2, 3}, factor: 1.2, maxBuckets: 4, want: &dto.Histogram{ SampleCount: proto.Uint64(8), SampleSum: proto.Float64(11.5), Schema: proto.Int32(1), ZeroThreshold: proto.Float64(2.938735877055719e-39), ZeroCount: proto.Uint64(1), PositiveSpan: []*dto.BucketSpan{ {Offset: proto.Int32(0), Length: proto.Uint32(5)}, }, PositiveDelta: []int64{1, 2, -1, -2, 1}, }, }, { name: "buckets limited by widening the zero bucket", observations: []float64{0, 1, 1.1, 1.2, 1.4, 1.8, 2, 3}, factor: 1.2, maxBuckets: 4, maxZeroThreshold: 1.2, want: &dto.Histogram{ SampleCount: proto.Uint64(8), SampleSum: proto.Float64(11.5), Schema: proto.Int32(2), ZeroThreshold: proto.Float64(1), ZeroCount: proto.Uint64(2), PositiveSpan: []*dto.BucketSpan{ {Offset: proto.Int32(1), Length: proto.Uint32(7)}, }, PositiveDelta: []int64{1, 1, -2, 2, -2, 0, 1}, }, }, { name: "buckets limited by widening the zero bucket twice", observations: []float64{0, 1, 1.1, 1.2, 1.4, 1.8, 2, 3, 4}, factor: 1.2, maxBuckets: 4, maxZeroThreshold: 1.2, want: &dto.Histogram{ SampleCount: proto.Uint64(9), SampleSum: proto.Float64(15.5), Schema: proto.Int32(2), ZeroThreshold: proto.Float64(1.189207115002721), ZeroCount: proto.Uint64(3), PositiveSpan: []*dto.BucketSpan{ {Offset: proto.Int32(2), Length: proto.Uint32(7)}, }, PositiveDelta: []int64{2, -2, 2, -2, 0, 1, 0}, }, }, { name: "buckets limited by reset", observations: []float64{0, 1, 1.1, 1.2, 1.4, 1.8, 2, 3, 4}, factor: 1.2, maxBuckets: 4, maxZeroThreshold: 1.2, minResetDuration: 5 * time.Minute, want: &dto.Histogram{ SampleCount: proto.Uint64(2), SampleSum: proto.Float64(7), Schema: proto.Int32(2), ZeroThreshold: proto.Float64(2.938735877055719e-39), ZeroCount: proto.Uint64(0), PositiveSpan: []*dto.BucketSpan{ {Offset: proto.Int32(7), Length: proto.Uint32(2)}, }, PositiveDelta: []int64{1, 0}, }, }, { name: "limited buckets but nothing triggered, negative observations", observations: []float64{0, -1, -1.2, -1.4, -1.8, -2}, factor: 1.2, maxBuckets: 4, want: &dto.Histogram{ SampleCount: proto.Uint64(6), SampleSum: proto.Float64(-7.4), Schema: proto.Int32(2), ZeroThreshold: proto.Float64(2.938735877055719e-39), ZeroCount: proto.Uint64(1), NegativeSpan: []*dto.BucketSpan{ {Offset: proto.Int32(0), Length: proto.Uint32(5)}, }, NegativeDelta: []int64{1, -1, 2, -2, 2}, }, }, { name: "buckets limited by halving resolution, negative observations", observations: []float64{0, -1, -1.1, -1.2, -1.4, -1.8, -2, -3}, factor: 1.2, maxBuckets: 4, want: &dto.Histogram{ SampleCount: proto.Uint64(8), SampleSum: proto.Float64(-11.5), Schema: proto.Int32(1), ZeroThreshold: proto.Float64(2.938735877055719e-39), ZeroCount: proto.Uint64(1), NegativeSpan: []*dto.BucketSpan{ {Offset: proto.Int32(0), Length: proto.Uint32(5)}, }, NegativeDelta: []int64{1, 2, -1, -2, 1}, }, }, { name: "buckets limited by widening the zero bucket, negative observations", observations: []float64{0, -1, -1.1, -1.2, -1.4, -1.8, -2, -3}, factor: 1.2, maxBuckets: 4, maxZeroThreshold: 1.2, want: &dto.Histogram{ SampleCount: proto.Uint64(8), SampleSum: proto.Float64(-11.5), Schema: proto.Int32(2), ZeroThreshold: proto.Float64(1), ZeroCount: proto.Uint64(2), NegativeSpan: []*dto.BucketSpan{ {Offset: proto.Int32(1), Length: proto.Uint32(7)}, }, NegativeDelta: []int64{1, 1, -2, 2, -2, 0, 1}, }, }, { name: "buckets limited by widening the zero bucket twice, negative observations", observations: []float64{0, -1, -1.1, -1.2, -1.4, -1.8, -2, -3, -4}, factor: 1.2, maxBuckets: 4, maxZeroThreshold: 1.2, want: &dto.Histogram{ SampleCount: proto.Uint64(9), SampleSum: proto.Float64(-15.5), Schema: proto.Int32(2), ZeroThreshold: proto.Float64(1.189207115002721), ZeroCount: proto.Uint64(3), NegativeSpan: []*dto.BucketSpan{ {Offset: proto.Int32(2), Length: proto.Uint32(7)}, }, NegativeDelta: []int64{2, -2, 2, -2, 0, 1, 0}, }, }, { name: "buckets limited by reset, negative observations", observations: []float64{0, -1, -1.1, -1.2, -1.4, -1.8, -2, -3, -4}, factor: 1.2, maxBuckets: 4, maxZeroThreshold: 1.2, minResetDuration: 5 * time.Minute, want: &dto.Histogram{ SampleCount: proto.Uint64(2), SampleSum: proto.Float64(-7), Schema: proto.Int32(2), ZeroThreshold: proto.Float64(2.938735877055719e-39), ZeroCount: proto.Uint64(0), NegativeSpan: []*dto.BucketSpan{ {Offset: proto.Int32(7), Length: proto.Uint32(2)}, }, NegativeDelta: []int64{1, 0}, }, }, { name: "buckets limited by halving resolution, then reset", observations: []float64{0, 1, 1.1, 1.2, 1.4, 1.8, 2, 5, 5.1, 3, 4}, factor: 1.2, maxBuckets: 4, minResetDuration: 9 * time.Minute, want: &dto.Histogram{ SampleCount: proto.Uint64(2), SampleSum: proto.Float64(7), Schema: proto.Int32(2), ZeroThreshold: proto.Float64(2.938735877055719e-39), ZeroCount: proto.Uint64(0), PositiveSpan: []*dto.BucketSpan{ {Offset: proto.Int32(7), Length: proto.Uint32(2)}, }, PositiveDelta: []int64{1, 0}, }, }, { name: "buckets limited by widening the zero bucket, then reset", observations: []float64{0, 1, 1.1, 1.2, 1.4, 1.8, 2, 5, 5.1, 3, 4}, factor: 1.2, maxBuckets: 4, maxZeroThreshold: 1.2, minResetDuration: 9 * time.Minute, want: &dto.Histogram{ SampleCount: proto.Uint64(2), SampleSum: proto.Float64(7), Schema: proto.Int32(2), ZeroThreshold: proto.Float64(2.938735877055719e-39), ZeroCount: proto.Uint64(0), PositiveSpan: []*dto.BucketSpan{ {Offset: proto.Int32(7), Length: proto.Uint32(2)}, }, PositiveDelta: []int64{1, 0}, }, }, } for _, s := range scenarios { t.Run(s.name, func(t *testing.T) { his := NewHistogram(HistogramOpts{ Name: "name", Help: "help", NativeHistogramBucketFactor: s.factor, NativeHistogramZeroThreshold: s.zeroThreshold, NativeHistogramMaxBucketNumber: s.maxBuckets, NativeHistogramMinResetDuration: s.minResetDuration, NativeHistogramMaxZeroThreshold: s.maxZeroThreshold, }) ts := time.Now().Add(30 * time.Second) now := func() time.Time { return ts } his.(*histogram).now = now for _, o := range s.observations { his.Observe(o) ts = ts.Add(time.Minute) } m := &dto.Metric{} if err := his.Write(m); err != nil { t.Fatal("unexpected error writing metric", err) } got := m.Histogram if !proto.Equal(s.want, got) { t.Errorf("want histogram %q, got %q", s.want, got) } }) } } func TestNativeHistogramConcurrency(t *testing.T) { if testing.Short() { t.Skip("Skipping test in short mode.") } rand.Seed(42) it := func(n uint32) bool { mutations := int(n%1e4 + 1e4) concLevel := int(n%5 + 1) total := mutations * concLevel var start, end sync.WaitGroup start.Add(1) end.Add(concLevel) his := NewHistogram(HistogramOpts{ Name: "test_native_histogram", Help: "This help is sparse.", NativeHistogramBucketFactor: 1.05, NativeHistogramZeroThreshold: 0.0000001, NativeHistogramMaxBucketNumber: 50, NativeHistogramMinResetDuration: time.Hour, // Comment out to test for totals below. NativeHistogramMaxZeroThreshold: 0.001, }) ts := time.Now().Add(30 * time.Second).Unix() now := func() time.Time { return time.Unix(atomic.LoadInt64(&ts), 0) } his.(*histogram).now = now allVars := make([]float64, total) var sampleSum float64 for i := 0; i < concLevel; i++ { vals := make([]float64, mutations) for j := 0; j < mutations; j++ { v := rand.NormFloat64() vals[j] = v allVars[i*mutations+j] = v sampleSum += v } go func(vals []float64) { start.Wait() for _, v := range vals { // An observation every 1 to 10 seconds. atomic.AddInt64(&ts, rand.Int63n(10)+1) his.Observe(v) } end.Done() }(vals) } sort.Float64s(allVars) start.Done() end.Wait() m := &dto.Metric{} his.Write(m) // Uncomment these tests for totals only if you have disabled histogram resets above. // // if got, want := int(*m.Histogram.SampleCount), total; got != want { // t.Errorf("got sample count %d, want %d", got, want) // } // if got, want := *m.Histogram.SampleSum, sampleSum; math.Abs((got-want)/want) > 0.001 { // t.Errorf("got sample sum %f, want %f", got, want) // } sumBuckets := int(m.Histogram.GetZeroCount()) current := 0 for _, delta := range m.Histogram.GetNegativeDelta() { current += int(delta) if current < 0 { t.Fatalf("negative bucket population negative: %d", current) } sumBuckets += current } current = 0 for _, delta := range m.Histogram.GetPositiveDelta() { current += int(delta) if current < 0 { t.Fatalf("positive bucket population negative: %d", current) } sumBuckets += current } if got, want := sumBuckets, int(*m.Histogram.SampleCount); got != want { t.Errorf("got bucket population sum %d, want %d", got, want) } return true } if err := quick.Check(it, nil); err != nil { t.Error(err) } } func TestGetLe(t *testing.T) { scenarios := []struct { key int schema int32 want float64 }{ { key: -1, schema: -1, want: 0.25, }, { key: 0, schema: -1, want: 1, }, { key: 1, schema: -1, want: 4, }, { key: 512, schema: -1, want: math.MaxFloat64, }, { key: 513, schema: -1, want: math.Inf(+1), }, { key: -1, schema: 0, want: 0.5, }, { key: 0, schema: 0, want: 1, }, { key: 1, schema: 0, want: 2, }, { key: 1024, schema: 0, want: math.MaxFloat64, }, { key: 1025, schema: 0, want: math.Inf(+1), }, { key: -1, schema: 2, want: 0.8408964152537144, }, { key: 0, schema: 2, want: 1, }, { key: 1, schema: 2, want: 1.189207115002721, }, { key: 4096, schema: 2, want: math.MaxFloat64, }, { key: 4097, schema: 2, want: math.Inf(+1), }, } for i, s := range scenarios { got := getLe(s.key, s.schema) if s.want != got { t.Errorf("%d. key %d, schema %d, want upper bound of %g, got %g", i, s.key, s.schema, s.want, got) } } } func TestHistogramCreatedTimestamp(t *testing.T) { now := time.Now() histogram := NewHistogram(HistogramOpts{ Name: "test", Help: "test help", Buckets: []float64{1, 2, 3, 4}, now: func() time.Time { return now }, }) var metric dto.Metric if err := histogram.Write(&metric); err != nil { t.Fatal(err) } if metric.Histogram.CreatedTimestamp.AsTime().Unix() != now.Unix() { t.Errorf("expected created timestamp %d, got %d", now.Unix(), metric.Histogram.CreatedTimestamp.AsTime().Unix()) } } func TestHistogramVecCreatedTimestamp(t *testing.T) { now := time.Now() histogramVec := NewHistogramVec(HistogramOpts{ Name: "test", Help: "test help", Buckets: []float64{1, 2, 3, 4}, now: func() time.Time { return now }, }, []string{"label"}) histogram := histogramVec.WithLabelValues("value").(Histogram) var metric dto.Metric if err := histogram.Write(&metric); err != nil { t.Fatal(err) } if metric.Histogram.CreatedTimestamp.AsTime().Unix() != now.Unix() { t.Errorf("expected created timestamp %d, got %d", now.Unix(), metric.Histogram.CreatedTimestamp.AsTime().Unix()) } }