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Agenda
1. How Prometheus Works & Concepts
2. Prometheus Data Model
3. Task: Instrument Go Application



Metrics-based monitoring & alerting stack.

• Instrumentation for applications and systems
• Metrics collection and storage
• Querying, alerting, dashboarding
• For all levels of the stack!

Made for dynamic cloud environments.

What is Prometheus?
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All using client_golang!
https://github.com/prometheus/client_golang
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https://github.com/prometheus/client_golang


Metric Types



Metric Types
1. Counter
2. Gauge (also can represent Info Type)
3. Histogram (Classic and Native)

Bonus: Exemplars

https://prometheus.io/docs/concepts/metric_types/

https://prometheus.io/docs/concepts/metric_types/


Counter
“How many HTTP calls it handled?”



Counter + Exemplar
“How many HTTP calls it handled?”
“Also what’s the traceID for example call that was handled?”



Gauge
“What’s typical response size?”



Gauge (Info)
“What version it is running?”



Histogram
“How fast it handled them?”



Histogram + Exemplars
“How fast it handled them?”
“Also what’s traceID for example call that was faster than 
100ms?”



Group of Metrics: Collectors



Middlewares/Tripperwares



Middlewares/Tripperwares

https://rss.com/podcasts/oat

https://rss.com/podcasts/oat


Scrape Endpoint



Today’s Task 
1. Clone https://github.com/prometheus/client_golang
2. Go to ./tutorials/whatsup
3. Modify main.go to have:

- Scrape Endpoint
- whatsup_queries_handled_total (counter)
- whatsup_last_response_elements (gauge)
- build_info (info gauge)
- whatsup_queries_duration_seconds (histogram)
- go_goroutines (gauge)

https://github.com/prometheus/client_golang


Testing & Verification 
1.  “make init” to run Prometheus and Jaeger in background

(make stop to stop it)
2. “make run” to run main.go (whatsup)

(Ctrl+C to stop it)

Now you can:
a. Run  “make metrics” to get main.go metrics to explore
b. Open Prometheus UI and query metrics
c. Run “make test” to run acceptance test



Stuck? Check reference impl!
Check ./tutorials/whatsup/reference/main.go for example 
working solution!



Prerequisites for local runs:
1.  Go 1.18+
2. git, make
3. docker



Engage with Promethus!
https://prometheus.io/community/

https://prometheus.io/community/

