
Prometheus
ContribFest

Instrument Go
Application

Prometheus team members

Agenda
1. How Prometheus Works & Concepts
2. Prometheus Data Model
3. Task: Instrument Go Application

Metrics-based monitoring & alerting stack.

• Instrumentation for applications and systems
• Metrics collection and storage
• Querying, alerting, dashboarding
• For all levels of the stack!

Made for dynamic cloud environments.

What is Prometheus?

Architecture

web app

API
server

mysqld

cgroups

Targets

Instrumentation & Exposition Collection, Storage & Processing Querying, Dashboards & Alerts

web app

Architecture

Prometheus

web app

API
server

mysqld

cgroups

Targets

Service Discovery
(DNS, Kubernetes, AWS, Consul,

custom...)

Instrumentation & Exposition Collection, Storage & Processing

TSDB

web app

Architecture

Prometheus

web app

API
server

mysqld

cgroups

Targets

Service Discovery
(DNS, Kubernetes, AWS, Consul,

custom...)

Grafana
Web UI

HTTP API

Alertmanager

Instrumentation & Exposition Collection, Storage & Processing Querying, Dashboards & Alerts

TSDB

···

 Grafana
 Web UI
 Automation

web app

Architecture

Prometheus

web app

API
server

mysqld

cgroups

Targets

Instrumentation & Exposition Collection, Storage & Processing

TSDB

web app

Instrumentation
?
?

?

?

?

Prometheus

web app

API
server

mysqld

cgroups

Targets

clientlib

Instrumentation & Exposition Collection, Storage & Processing

TSDB

clientlib

web app

Instrumentation
“Manual”

Prometheus

web app

API
server

mysqld

cgroups

Targets

clientlib

Instrumentation & Exposition Collection, Storage & Processing

TSDB

clientlib

web app

clientlib

service mesh
/ eBPF

Instrumentation
“Manual”

“Auto”

Prometheus

web app

API
server

mysqld

cgroups

Targets

clientlib

Instrumentation & Exposition Collection, Storage & Processing

TSDB

clientlib

exporter

exporter

web app

clientlib

service mesh
/ eBPF

Instrumentation
“Manual”

“Auto”

“Exporter”

Prometheus

web app

API
server

mysqld

cgroups

Targets

clientlib

Instrumentation & Exposition Collection, Storage & Processing

TSDB

clientlib

exporter

exporter

web app

clientlib

service mesh
/ eBPF

Today’s Focus
“Manual”

“Auto”

“Exporter”

Today’s Challenge

“whatsup”

Prometheus
TSDB

query “up”

Today’s Challenge

“whatsup”

Prometheus
TSDB

query “up”

When deployed:
1. Is the “whatsup” up?
2. How many HTTP calls it handled?
3. How fast it handled them?
4. What’s average response size?
5. What version it is running?
6. How much memory & CPU it’s

using?

Today’s Challenge

“whatsup”

Prometheus
TSDB

Query “up”

When deployed:
1. Is the “whatsup” up?
2. How many HTTP calls it handled?
3. How fast it handled them?
4. What’s typical response size?
5. What version it is running?
6. How much memory & CPU it’s

using?

clientlib

Scrape

TODO today!

Today’s Challenge

“whatsup”

Prometheus
TSDB

Query “up”

All using client_golang!
https://github.com/prometheus/client_golang

clientlib

Scrape

TODO today!

https://github.com/prometheus/client_golang

Metric Types

Metric Types
1. Counter
2. Gauge (also can represent Info Type)
3. Histogram (Classic and Native)

Bonus: Exemplars

https://prometheus.io/docs/concepts/metric_types/

https://prometheus.io/docs/concepts/metric_types/

Counter
“How many HTTP calls it handled?”

Counter + Exemplar
“How many HTTP calls it handled?”
“Also what’s the traceID for example call that was handled?”

Gauge
“What’s typical response size?”

Gauge (Info)
“What version it is running?”

Histogram
“How fast it handled them?”

Histogram + Exemplars
“How fast it handled them?”
“Also what’s traceID for example call that was faster than
100ms?”

Group of Metrics: Collectors

Middlewares/Tripperwares

Middlewares/Tripperwares

https://rss.com/podcasts/oat

https://rss.com/podcasts/oat

Scrape Endpoint

Today’s Task
1. Clone https://github.com/prometheus/client_golang
2. Go to ./tutorials/whatsup
3. Modify main.go to have:

- Scrape Endpoint
- whatsup_queries_handled_total (counter)
- whatsup_last_response_elements (gauge)
- build_info (info gauge)
- whatsup_queries_duration_seconds (histogram)
- go_goroutines (gauge)

https://github.com/prometheus/client_golang

Testing & Verification
1. “make init” to run Prometheus and Jaeger in background

(make stop to stop it)
2. “make run” to run main.go (whatsup)

(Ctrl+C to stop it)

Now you can:
a. Run “make metrics” to get main.go metrics to explore
b. Open Prometheus UI and query metrics
c. Run “make test” to run acceptance test

Stuck? Check reference impl!
Check ./tutorials/whatsup/reference/main.go for example
working solution!

Prerequisites for local runs:
1. Go 1.18+
2. git, make
3. docker

Engage with Promethus!
https://prometheus.io/community/

https://prometheus.io/community/

