Merge pull request #1673 from imorph/faster_find_bucket

PERF: faster algorithm to discover bucket of an histogram observation
This commit is contained in:
Arthur Silva Sens 2024-11-08 07:22:56 -03:00 committed by GitHub
commit 2b11a4ba39
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 117 additions and 9 deletions

View File

@ -858,15 +858,35 @@ func (h *histogram) Write(out *dto.Metric) error {
// findBucket returns the index of the bucket for the provided value, or // findBucket returns the index of the bucket for the provided value, or
// len(h.upperBounds) for the +Inf bucket. // len(h.upperBounds) for the +Inf bucket.
func (h *histogram) findBucket(v float64) int { func (h *histogram) findBucket(v float64) int {
// TODO(beorn7): For small numbers of buckets (<30), a linear search is n := len(h.upperBounds)
// slightly faster than the binary search. If we really care, we could if n == 0 {
// switch from one search strategy to the other depending on the number return 0
// of buckets. }
//
// Microbenchmarks (BenchmarkHistogramNoLabels): // Early exit: if v is less than or equal to the first upper bound, return 0
// 11 buckets: 38.3 ns/op linear - binary 48.7 ns/op if v <= h.upperBounds[0] {
// 100 buckets: 78.1 ns/op linear - binary 54.9 ns/op return 0
// 300 buckets: 154 ns/op linear - binary 61.6 ns/op }
// Early exit: if v is greater than the last upper bound, return len(h.upperBounds)
if v > h.upperBounds[n-1] {
return n
}
// For small arrays, use simple linear search
// "magic number" 35 is result of tests on couple different (AWS and baremetal) servers
// see more details here: https://github.com/prometheus/client_golang/pull/1662
if n < 35 {
for i, bound := range h.upperBounds {
if v <= bound {
return i
}
}
// If v is greater than all upper bounds, return len(h.upperBounds)
return n
}
// For larger arrays, use stdlib's binary search
return sort.SearchFloat64s(h.upperBounds, v) return sort.SearchFloat64s(h.upperBounds, v)
} }

View File

@ -1455,3 +1455,91 @@ func compareNativeExemplarValues(t *testing.T, exps []*dto.Exemplar, values []fl
} }
} }
} }
var resultFindBucket int
func benchmarkFindBucket(b *testing.B, l int) {
h := &histogram{upperBounds: make([]float64, l)}
for i := range h.upperBounds {
h.upperBounds[i] = float64(i)
}
v := float64(l / 2)
b.ResetTimer()
for i := 0; i < b.N; i++ {
resultFindBucket = h.findBucket(v)
}
}
func BenchmarkFindBucketShort(b *testing.B) {
benchmarkFindBucket(b, 20)
}
func BenchmarkFindBucketMid(b *testing.B) {
benchmarkFindBucket(b, 40)
}
func BenchmarkFindBucketLarge(b *testing.B) {
benchmarkFindBucket(b, 100)
}
func BenchmarkFindBucketHuge(b *testing.B) {
benchmarkFindBucket(b, 500)
}
func BenchmarkFindBucketInf(b *testing.B) {
h := &histogram{upperBounds: make([]float64, 500)}
for i := range h.upperBounds {
h.upperBounds[i] = float64(i)
}
v := 1000.5
b.ResetTimer()
for i := 0; i < b.N; i++ {
resultFindBucket = h.findBucket(v)
}
}
func BenchmarkFindBucketLow(b *testing.B) {
h := &histogram{upperBounds: make([]float64, 500)}
for i := range h.upperBounds {
h.upperBounds[i] = float64(i)
}
v := -1.1
b.ResetTimer()
for i := 0; i < b.N; i++ {
resultFindBucket = h.findBucket(v)
}
}
func TestFindBucket(t *testing.T) {
smallHistogram := &histogram{upperBounds: []float64{1, 2, 3, 4, 5}}
largeHistogram := &histogram{upperBounds: make([]float64, 50)}
for i := range largeHistogram.upperBounds {
largeHistogram.upperBounds[i] = float64(i)
}
tests := []struct {
h *histogram
v float64
expected int
}{
{smallHistogram, -1, 0},
{smallHistogram, 0.5, 0},
{smallHistogram, 2.5, 2},
{smallHistogram, 5.5, 5},
{largeHistogram, -1, 0},
{largeHistogram, 25.5, 26},
{largeHistogram, 49.5, 50},
{largeHistogram, 50.5, 50},
{largeHistogram, 5000.5, 50},
}
for _, tt := range tests {
result := tt.h.findBucket(tt.v)
if result != tt.expected {
t.Errorf("findBucket(%v) = %d; expected %d", tt.v, result, tt.expected)
}
}
}