2015-02-02 17:14:36 +03:00
|
|
|
// Copyright 2015 The Prometheus Authors
|
2015-01-06 17:35:57 +03:00
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
//
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
//
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
// limitations under the License.
|
|
|
|
|
|
|
|
// A simple example exposing fictional RPC latencies with different types of
|
|
|
|
// random distributions (uniform, normal, and exponential) as Prometheus
|
|
|
|
// metrics.
|
|
|
|
package main
|
|
|
|
|
|
|
|
import (
|
|
|
|
"flag"
|
2020-01-14 21:22:19 +03:00
|
|
|
"fmt"
|
2016-11-02 12:52:31 +03:00
|
|
|
"log"
|
2015-01-06 19:02:26 +03:00
|
|
|
"math"
|
2015-01-06 17:35:57 +03:00
|
|
|
"math/rand"
|
|
|
|
"net/http"
|
|
|
|
"time"
|
|
|
|
|
|
|
|
"github.com/prometheus/client_golang/prometheus"
|
2022-03-16 12:46:48 +03:00
|
|
|
"github.com/prometheus/client_golang/prometheus/collectors"
|
2016-11-12 18:36:39 +03:00
|
|
|
"github.com/prometheus/client_golang/prometheus/promhttp"
|
2015-01-06 17:35:57 +03:00
|
|
|
)
|
|
|
|
|
2022-10-21 17:47:21 +03:00
|
|
|
type metrics struct {
|
|
|
|
rpcDurations *prometheus.SummaryVec
|
|
|
|
rpcDurationsHistogram prometheus.Histogram
|
|
|
|
}
|
2015-01-06 17:35:57 +03:00
|
|
|
|
2022-10-21 17:47:21 +03:00
|
|
|
func NewMetrics(reg prometheus.Registerer, normMean, normDomain float64) *metrics {
|
|
|
|
m := &metrics{
|
|
|
|
// Create a summary to track fictional inter service RPC latencies for three
|
2021-11-10 18:20:10 +03:00
|
|
|
// distinct services with different latency distributions. These services are
|
|
|
|
// differentiated via a "service" label.
|
2022-10-21 17:47:21 +03:00
|
|
|
rpcDurations: prometheus.NewSummaryVec(
|
2021-11-10 18:20:10 +03:00
|
|
|
prometheus.SummaryOpts{
|
|
|
|
Name: "rpc_durations_seconds",
|
|
|
|
Help: "RPC latency distributions.",
|
|
|
|
Objectives: map[float64]float64{0.5: 0.05, 0.9: 0.01, 0.99: 0.001},
|
|
|
|
},
|
|
|
|
[]string{"service"},
|
2022-10-21 17:47:21 +03:00
|
|
|
),
|
2022-10-19 19:38:57 +03:00
|
|
|
// The same as above, but now as a histogram, and only for the
|
|
|
|
// normal distribution. The histogram features both conventional
|
|
|
|
// buckets as well as sparse buckets, the latter needed for the
|
|
|
|
// experimental native histograms (ingested by a Prometheus
|
|
|
|
// server v2.40 with the corresponding feature flag
|
|
|
|
// enabled). The conventional buckets are targeted to the
|
|
|
|
// parameters of the normal distribution, with 20 buckets
|
|
|
|
// centered on the mean, each half-sigma wide. The sparse
|
|
|
|
// buckets are always centered on zero, with a growth factor of
|
2022-11-09 19:56:59 +03:00
|
|
|
// one bucket to the next of (at most) 1.1. (The precise factor
|
2022-10-19 19:38:57 +03:00
|
|
|
// is 2^2^-3 = 1.0905077...)
|
2022-10-21 17:47:21 +03:00
|
|
|
rpcDurationsHistogram: prometheus.NewHistogram(prometheus.HistogramOpts{
|
2024-06-20 20:03:14 +03:00
|
|
|
Name: "rpc_durations_histogram_seconds",
|
|
|
|
Help: "RPC latency distributions.",
|
|
|
|
Buckets: prometheus.LinearBuckets(normMean-5*normDomain, .5*normDomain, 20),
|
|
|
|
NativeHistogramBucketFactor: 1.1,
|
|
|
|
NativeHistogramZeroThreshold: prometheus.NativeHistogramZeroThresholdZero,
|
2022-10-21 17:47:21 +03:00
|
|
|
}),
|
|
|
|
}
|
|
|
|
reg.MustRegister(m.rpcDurations)
|
|
|
|
reg.MustRegister(m.rpcDurationsHistogram)
|
|
|
|
return m
|
|
|
|
}
|
|
|
|
|
|
|
|
func main() {
|
|
|
|
var (
|
|
|
|
addr = flag.String("listen-address", ":8080", "The address to listen on for HTTP requests.")
|
|
|
|
uniformDomain = flag.Float64("uniform.domain", 0.0002, "The domain for the uniform distribution.")
|
|
|
|
normDomain = flag.Float64("normal.domain", 0.0002, "The domain for the normal distribution.")
|
|
|
|
normMean = flag.Float64("normal.mean", 0.00001, "The mean for the normal distribution.")
|
|
|
|
oscillationPeriod = flag.Duration("oscillation-period", 10*time.Minute, "The duration of the rate oscillation period.")
|
2015-01-06 17:35:57 +03:00
|
|
|
)
|
|
|
|
|
2022-10-21 17:47:21 +03:00
|
|
|
flag.Parse()
|
|
|
|
|
|
|
|
// Create a non-global registry.
|
|
|
|
reg := prometheus.NewRegistry()
|
|
|
|
|
|
|
|
// Create new metrics and register them using the custom registry.
|
|
|
|
m := NewMetrics(reg, *normMean, *normDomain)
|
2019-06-06 22:07:33 +03:00
|
|
|
// Add Go module build info.
|
2022-10-21 17:47:21 +03:00
|
|
|
reg.MustRegister(collectors.NewBuildInfoCollector())
|
2015-01-06 17:35:57 +03:00
|
|
|
|
2015-01-06 19:02:26 +03:00
|
|
|
start := time.Now()
|
|
|
|
|
|
|
|
oscillationFactor := func() float64 {
|
|
|
|
return 2 + math.Sin(math.Sin(2*math.Pi*float64(time.Since(start))/float64(*oscillationPeriod)))
|
|
|
|
}
|
|
|
|
|
|
|
|
// Periodically record some sample latencies for the three services.
|
2015-01-06 17:35:57 +03:00
|
|
|
go func() {
|
|
|
|
for {
|
2015-02-23 18:19:01 +03:00
|
|
|
v := rand.Float64() * *uniformDomain
|
2022-10-21 17:47:21 +03:00
|
|
|
m.rpcDurations.WithLabelValues("uniform").Observe(v)
|
2015-01-06 19:02:26 +03:00
|
|
|
time.Sleep(time.Duration(100*oscillationFactor()) * time.Millisecond)
|
|
|
|
}
|
|
|
|
}()
|
|
|
|
|
|
|
|
go func() {
|
2024-06-20 20:03:14 +03:00
|
|
|
m.rpcDurationsHistogram.(prometheus.ExemplarObserver).ObserveWithExemplar(
|
|
|
|
0, prometheus.Labels{"dummyID": fmt.Sprint(rand.Intn(100000))},
|
|
|
|
)
|
|
|
|
m.rpcDurationsHistogram.(prometheus.ExemplarObserver).ObserveWithExemplar(
|
|
|
|
0, prometheus.Labels{"dummyID": fmt.Sprint(rand.Intn(100000))},
|
|
|
|
)
|
|
|
|
m.rpcDurationsHistogram.(prometheus.ExemplarObserver).ObserveWithExemplar(
|
|
|
|
0, prometheus.Labels{"dummyID": fmt.Sprint(rand.Intn(100000))},
|
|
|
|
)
|
2024-06-26 20:17:45 +03:00
|
|
|
|
2015-01-06 19:02:26 +03:00
|
|
|
for {
|
2024-06-26 20:17:45 +03:00
|
|
|
v := math.Abs((rand.NormFloat64() * *normDomain) + *normMean)
|
2022-10-21 17:47:21 +03:00
|
|
|
m.rpcDurations.WithLabelValues("normal").Observe(v)
|
2020-01-26 01:40:35 +03:00
|
|
|
// Demonstrate exemplar support with a dummy ID. This
|
|
|
|
// would be something like a trace ID in a real
|
|
|
|
// application. Note the necessary type assertion. We
|
|
|
|
// already know that rpcDurationsHistogram implements
|
|
|
|
// the ExemplarObserver interface and thus don't need to
|
2020-01-27 17:46:39 +03:00
|
|
|
// check the outcome of the type assertion.
|
2022-10-21 17:47:21 +03:00
|
|
|
m.rpcDurationsHistogram.(prometheus.ExemplarObserver).ObserveWithExemplar(
|
2020-01-14 21:22:19 +03:00
|
|
|
v, prometheus.Labels{"dummyID": fmt.Sprint(rand.Intn(100000))},
|
|
|
|
)
|
2024-06-20 20:03:14 +03:00
|
|
|
time.Sleep(time.Duration(oscillationFactor()) * time.Millisecond)
|
2015-01-06 19:02:26 +03:00
|
|
|
}
|
|
|
|
}()
|
2015-01-06 17:35:57 +03:00
|
|
|
|
2015-01-06 19:02:26 +03:00
|
|
|
go func() {
|
|
|
|
for {
|
2016-11-12 18:36:39 +03:00
|
|
|
v := rand.ExpFloat64() / 1e6
|
2022-10-21 17:47:21 +03:00
|
|
|
m.rpcDurations.WithLabelValues("exponential").Observe(v)
|
2015-01-06 19:02:26 +03:00
|
|
|
time.Sleep(time.Duration(50*oscillationFactor()) * time.Millisecond)
|
2015-01-06 17:35:57 +03:00
|
|
|
}
|
|
|
|
}()
|
|
|
|
|
|
|
|
// Expose the registered metrics via HTTP.
|
2020-01-14 21:22:19 +03:00
|
|
|
http.Handle("/metrics", promhttp.HandlerFor(
|
2022-10-21 17:47:21 +03:00
|
|
|
reg,
|
2020-01-14 21:22:19 +03:00
|
|
|
promhttp.HandlerOpts{
|
|
|
|
// Opt into OpenMetrics to support exemplars.
|
|
|
|
EnableOpenMetrics: true,
|
2022-10-21 17:47:21 +03:00
|
|
|
// Pass custom registry
|
|
|
|
Registry: reg,
|
2020-01-14 21:22:19 +03:00
|
|
|
},
|
|
|
|
))
|
2016-11-02 12:52:31 +03:00
|
|
|
log.Fatal(http.ListenAndServe(*addr, nil))
|
2015-01-06 17:35:57 +03:00
|
|
|
}
|