// Package buntdb implements a low-level in-memory key/value store in pure Go. // It persists to disk, is ACID compliant, and uses locking for multiple // readers and a single writer. Bunt is ideal for projects that need // a dependable database, and favor speed over data size. package buntdb import ( "bufio" "bytes" "errors" "io" "os" "sort" "strconv" "strings" "sync" "time" "github.com/tidwall/btree" "github.com/tidwall/rtree" ) var ( // ErrTxNotWritable is returned when performing a write operation on a // read-only transaction. ErrTxNotWritable = errors.New("tx not writable") // ErrTxClosed is returned when committing or rolling back a transaction // that has already been committed or rolled back. ErrTxClosed = errors.New("tx closed") // ErrNotFound is returned when an item or index is not in the database. ErrNotFound = errors.New("not found") // ErrInvalid is returned when the database file is an invalid format. ErrInvalid = errors.New("invalid database") // ErrDatabaseClosed is returned when the database is closed. ErrDatabaseClosed = errors.New("database closed") // ErrIndexExists is returned when an index already exists in the database. ErrIndexExists = errors.New("index exists") // ErrInvalidOperation is returned when an operation cannot be completed. ErrInvalidOperation = errors.New("invalid operation") // ErrInvalidSyncPolicy is returned for an invalid SyncPolicy value. ErrInvalidSyncPolicy = errors.New("invalid sync policy") // ErrShrinkInProcess is returned when a shrink operation is in-process. ErrShrinkInProcess = errors.New("shrink is in-process") ) // Iterator allows callers of Ascend* or Descend* to iterate in-order // over portions of an index. When this function returns false, iteration // will stop and the associated Ascend* or Descend* function will immediately // return. type Iterator func(key, val string) bool // DB represents a collection of key-value pairs that persist on disk. // Transactions are used for all forms of data access to the DB. type DB struct { mu sync.RWMutex // the gatekeeper for all fields file *os.File // the underlying file bufw *bufio.Writer // only write to this keys *btree.BTree // a tree of all item ordered by key exps *btree.BTree // a tree of items ordered by expiration idxs map[string]*index // the index trees. exmgr bool // indicates that expires manager is running. flushes int // a count of the number of disk flushes closed bool // set when the database has been closed config Config // the database configuration persist bool // do we write to disk shrinking bool // when an aof shrink is in-process. lastaofsz int // the size of the last shrink aof size } // SyncPolicy represents how often data is synced to disk. type SyncPolicy int const ( // Never is used to disable syncing data to disk. // The faster and less safe method. Never SyncPolicy = 0 // EverySecond is used to sync data to disk every second. // It's pretty fast and you can lose 1 second of data if there // is a disaster. // This is the recommended setting. EverySecond = 1 // Always is used to sync data after every write to disk. // Very very slow. Very safe. Always = 2 ) // Config represents database configuration options. These // options are used to change various behaviors of the database. type Config struct { // SyncPolicy adjusts how often the data is synced to disk. // This value can be Never, EverySecond, or Always. // The default is EverySecond. SyncPolicy SyncPolicy // AutoShrinkPercentage is used by the background process to trigger // a shrink of the aof file when the size of the file is larger than the // percentage of the result of the previous shrunk file. // For example, if this value is 100, and the last shrink process // resulted in a 100mb file, then the new aof file must be 200mb before // a shrink is triggered. AutoShrinkPercentage int // AutoShrinkMinSize defines the minimum size of the aof file before // an automatic shrink can occur. AutoShrinkMinSize int // AutoShrinkDisabled turns off automatic background shrinking AutoShrinkDisabled bool } // exctx is a simple b-tree context for ordering by expiration. type exctx struct { db *DB } // Open opens a database at the provided path. // If the file does not exist then it will be created automatically. func Open(path string) (*DB, error) { db := &DB{} db.keys = btree.New(16, nil) db.exps = btree.New(16, &exctx{db}) db.idxs = make(map[string]*index) db.config = Config{ SyncPolicy: EverySecond, AutoShrinkPercentage: 100, AutoShrinkMinSize: 32 * 1024 * 1024, } db.persist = path != ":memory:" if db.persist { var err error // Hardcoding 0666 as the default mode. db.file, err = os.OpenFile(path, os.O_CREATE|os.O_RDWR, 0666) if err != nil { return nil, err } if err := db.load(); err != nil { _ = db.file.Close() return nil, err } db.bufw = bufio.NewWriter(db.file) } // start the background manager. go db.backgroundManager() return db, nil } // Close releases all database resources. // All transactions must be closed before closing the database. func (db *DB) Close() error { db.mu.Lock() defer db.mu.Unlock() if db.closed { return ErrDatabaseClosed } db.closed = true if db.persist { if err := db.file.Close(); err != nil { return err } } // Let's release all references to nil. This will help both with debugging // late usage panics and it provides a hint to the garbage collector db.keys, db.exps, db.idxs, db.file, db.bufw = nil, nil, nil, nil, nil return nil } // index represents a b-tree or r-tree index and also acts as the // b-tree/r-tree context for itself. type index struct { btr *btree.BTree // contains the items rtr *rtree.RTree // contains the items name string // name of the index pattern string // a required key pattern less func(a, b string) bool // less comparison function rect func(item string) (min, max []float64) // rect from string function db *DB // the origin database } // CreateIndex builds a new index and populates it with items. // The items are ordered in an b-tree and can be retrieved using the // Ascend* and Descend* methods. // An error will occur if an index with the same name already exists. // // When a pattern is provided, the index will be populated with // keys that match the specified pattern. // The less function compares if string 'a' is less than string 'b'. // It allows for indexes to create custom ordering. It's possible // that the strings may be textual or binary. It's up to the provided // less function to handle the content format and comparison. // There are some default less function that can be used such as // IndexString, IndexBinary, etc. func (db *DB) CreateIndex(name, pattern string, less func(a, b string) bool) error { return db.createIndex(name, pattern, less, nil) } // CreateSpatialIndex builds a new index and populates it with items. // The items are organized in an r-tree and can be retrieved using the // Intersects method. // An error will occur if an index with the same name already exists. // // The rect function converts a string to a rectangle. The rectangle is // represented by two arrays, min and max. Both arrays may have a length // between 1 and 20, and both arrays must match in length. A length of 1 is a // one dimensional rectangle, and a length of 4 is a four dimension rectangle. // There is support for up to 20 dimensions. // The values of min must be less than the values of max at the same dimension. // Thus min[0] must be less-than-or-equal-to max[0]. // The IndexRect is a default function that can be used for the rect // parameter. func (db *DB) CreateSpatialIndex(name, pattern string, rect func(item string) (min, max []float64)) error { return db.createIndex(name, pattern, nil, rect) } // createIndex is called by CreateIndex() and CreateSpatialIndex() func (db *DB) createIndex( name string, pattern string, less func(a, b string) bool, rect func(item string) (min, max []float64), ) error { db.mu.Lock() defer db.mu.Unlock() if db.closed { return ErrDatabaseClosed } if name == "" { return ErrIndexExists } if _, ok := db.idxs[name]; ok { return ErrIndexExists } idx := &index{ name: name, pattern: pattern, less: less, rect: rect, db: db, } if less != nil { idx.btr = btree.New(16, idx) } if rect != nil { idx.rtr = rtree.New(idx) } db.keys.Ascend(func(item btree.Item) bool { dbi := item.(*dbItem) if !wildcardMatch(dbi.key, idx.pattern) { return true } if less != nil { idx.btr.ReplaceOrInsert(dbi) } if rect != nil { idx.rtr.Insert(dbi) } return true }) db.idxs[name] = idx return nil } // wilcardMatch returns true if str matches pattern. This is a very // simple wildcard match where '*' matches on any number characters // and '?' matches on any one character. func wildcardMatch(str, pattern string) bool { if pattern == "*" { return true } return deepMatch(str, pattern) } func deepMatch(str, pattern string) bool { for len(pattern) > 0 { switch pattern[0] { default: if len(str) == 0 || str[0] != pattern[0] { return false } case '?': if len(str) == 0 { return false } case '*': return wildcardMatch(str, pattern[1:]) || (len(str) > 0 && wildcardMatch(str[1:], pattern)) } str = str[1:] pattern = pattern[1:] } return len(str) == 0 && len(pattern) == 0 } // DropIndex removes an index. func (db *DB) DropIndex(name string) error { db.mu.Lock() defer db.mu.Unlock() if db.closed { return ErrDatabaseClosed } if name == "" { return ErrInvalidOperation } if _, ok := db.idxs[name]; !ok { return ErrNotFound } delete(db.idxs, name) return nil } // Indexes returns a list of index names. func (db *DB) Indexes() ([]string, error) { db.mu.RLock() defer db.mu.RUnlock() if db.closed { return nil, ErrDatabaseClosed } names := make([]string, 0, len(db.idxs)) for name := range db.idxs { names = append(names, name) } sort.Strings(names) return names, nil } // ReadConfig returns the database configuration. func (db *DB) ReadConfig(config *Config) error { db.mu.RLock() defer db.mu.RUnlock() if db.closed { return ErrDatabaseClosed } *config = db.config return nil } // SetConfig updates the database configuration. func (db *DB) SetConfig(config Config) error { db.mu.Lock() defer db.mu.Unlock() if db.closed { return ErrDatabaseClosed } switch config.SyncPolicy { default: return ErrInvalidSyncPolicy case Never, EverySecond, Always: } db.config = config return nil } // insertIntoDatabase performs inserts an item in to the database and updates // all indexes. If a previous item with the same key already exists, that item // will be replaced with the new one, and return the previous item. func (db *DB) insertIntoDatabase(item *dbItem) *dbItem { var pdbi *dbItem prev := db.keys.ReplaceOrInsert(item) if prev != nil { // A previous item was removed from the keys tree. Let's // fully delete this item from all indexes. pdbi = prev.(*dbItem) if pdbi.opts != nil && pdbi.opts.ex { // Remove it from the exipres tree. db.exps.Delete(pdbi) } for _, idx := range db.idxs { if idx.btr != nil { // Remove it from the btree index. idx.btr.Delete(pdbi) } if idx.rtr != nil { // Remove it from the rtree index. idx.rtr.Remove(pdbi) } } } if item.opts != nil && item.opts.ex { // The new item has eviction options. Add it to the // expires tree db.exps.ReplaceOrInsert(item) } for _, idx := range db.idxs { if !wildcardMatch(item.key, idx.pattern) { continue } if idx.btr != nil { // Add new item to btree index. idx.btr.ReplaceOrInsert(item) } if idx.rtr != nil { // Add new item to rtree index. idx.rtr.Insert(item) } } // we must return the previous item to the caller. return pdbi } // deleteFromDatabase removes and item from the database and indexes. The input // item must only have the key field specified thus "&dbItem{key: key}" is all // that is needed to fully remove the item with the matching key. If an item // with the matching key was found in the database, it will be removed and // returned to the caller. A nil return value means that the item was not // found in the database func (db *DB) deleteFromDatabase(item *dbItem) *dbItem { var pdbi *dbItem prev := db.keys.Delete(item) if prev != nil { pdbi = prev.(*dbItem) if pdbi.opts != nil && pdbi.opts.ex { // Remove it from the exipres tree. db.exps.Delete(pdbi) } for _, idx := range db.idxs { if idx.btr != nil { // Remove it from the btree index. idx.btr.Delete(pdbi) } if idx.rtr != nil { // Remove it from the rtree index. idx.rtr.Remove(pdbi) } } } return pdbi } // backgroundManager runs continuously in the background and performs various // operations such as removing expired items and syncing to disk. func (db *DB) backgroundManager() { flushes := 0 t := time.NewTicker(time.Second) defer t.Stop() for range t.C { var shrink bool // Open a standard view. This will take a full lock of the // database thus allowing for access to anything we need. err := db.Update(func(tx *Tx) error { if db.persist && !db.config.AutoShrinkDisabled { pos, err := db.file.Seek(0, 1) if err != nil { return err } aofsz := int(pos) if aofsz > db.config.AutoShrinkMinSize { perc := float64(db.config.AutoShrinkPercentage) / 100.0 shrink = aofsz > db.lastaofsz+int(float64(db.lastaofsz)*perc) } } // produce a list of expired items that need removing var remove []*dbItem db.exps.AscendLessThan(&dbItem{ opts: &dbItemOpts{ex: true, exat: time.Now()}, }, func(item btree.Item) bool { remove = append(remove, item.(*dbItem)) return true }) for _, item := range remove { if _, err := tx.Delete(item.key); err != nil { // it's ok to get a "not found" because the // 'Delete' method reports "not found" for // expired items. if err != ErrNotFound { return err } } } // execute a disk sync. if db.persist && db.config.SyncPolicy == EverySecond && flushes != db.flushes { _ = db.file.Sync() flushes = db.flushes } return nil }) if err == ErrDatabaseClosed { break } if shrink { if err = db.Shrink(); err != nil { if err == ErrDatabaseClosed { break } } } } } // Shrink will make the database file smaller by removing redundant // log entries. This operation does not block the database. func (db *DB) Shrink() error { db.mu.Lock() if db.closed { db.mu.Unlock() return ErrDatabaseClosed } if !db.persist { // The database was opened with ":memory:" as the path. // There is no persistence, and no need to do anything here. db.mu.Unlock() return nil } if db.shrinking { // The database is already in the process of shrinking. db.mu.Unlock() return ErrShrinkInProcess } db.shrinking = true defer func() { db.mu.Lock() db.shrinking = false db.mu.Unlock() }() fname := db.file.Name() tmpname := fname + ".tmp" // the endpos is used to return to the end of the file when we are // finished writing all of the current items. endpos, err := db.file.Seek(0, 2) if err != nil { return err } db.mu.Unlock() f, err := os.Create(tmpname) if err != nil { return err } defer func() { _ = f.Close() _ = os.RemoveAll(tmpname) }() // we are going to read items in as chunks as to not hold up the database // for too long. wr := bufio.NewWriter(f) pivot := "" done := false for !done { err := func() error { db.mu.RLock() defer db.mu.RUnlock() if db.closed { return ErrDatabaseClosed } n := 0 done = true db.keys.AscendGreaterOrEqual(&dbItem{key: pivot}, func(item btree.Item) bool { dbi := item.(*dbItem) if n > 100 { pivot = dbi.key done = false return false } dbi.writeSetTo(wr) n++ return true }, ) if err := wr.Flush(); err != nil { return err } return nil }() if err != nil { return err } } // We reached this far so all of the items have been written to a new tmp // There's some more work to do by appending the new line from the aof // to the tmp file and finally swap the files out. return func() error { // We're wrapping this in a function to get the benefit of a defered // lock/unlock. db.mu.Lock() defer db.mu.Unlock() if db.closed { return ErrDatabaseClosed } // We are going to open a new version of the aof file so that we do // not change the seek position of the previous. This may cause a // problem in the future if we choose to use syscall file locking. aof, err := os.Open(fname) if err != nil { return err } defer func() { _ = aof.Close() }() if _, err := aof.Seek(endpos, 0); err != nil { return err } // Just copy all of the new commands that have occurred since we // started the shrink process. if _, err := io.Copy(f, aof); err != nil { return err } // Close all files if err := aof.Close(); err != nil { return err } if err := f.Close(); err != nil { return err } if err := db.file.Close(); err != nil { return err } // Any failures below here is really bad. So just panic. if err := os.Rename(tmpname, fname); err != nil { panic(err) } db.file, err = os.OpenFile(fname, os.O_CREATE|os.O_RDWR, 0666) if err != nil { panic(err) } pos, err := db.file.Seek(0, 2) if err != nil { return err } // reset the bufio writer db.bufw = bufio.NewWriter(db.file) db.lastaofsz = int(pos) return nil }() } func loadReadLine(r *bufio.Reader) (string, error) { line, err := r.ReadBytes('\n') if err != nil { return "", err } if len(line) < 2 || line[len(line)-2] != '\r' { return "", ErrInvalid } return string(line[:len(line)-2]), nil } func loadReadLineNum(r *bufio.Reader) (int, error) { line, err := loadReadLine(r) if err != nil { return 0, err } n, err := strconv.ParseUint(line, 10, 64) if err != nil { return 0, err } return int(n), nil } var errValidEOF = errors.New("valid eof") func loadReadCommand(r *bufio.Reader) ([]string, error) { c, err := r.ReadByte() if err != nil { if err == io.EOF { return nil, errValidEOF } return nil, err } if c != '*' { return nil, ErrInvalid } n, err := loadReadLineNum(r) if err != nil { return nil, err } parts := make([]string, n) for i := 0; i < len(parts); i++ { c, err := r.ReadByte() if err != nil { return nil, err } if c != '$' { return nil, ErrInvalid } n, err := loadReadLineNum(r) if err != nil { return nil, err } data := make([]byte, n) if _, err = io.ReadFull(r, data); err != nil { return nil, err } eol := make([]byte, 2) if _, err = io.ReadFull(r, eol); err != nil { return nil, err } if eol[0] != '\r' || eol[1] != '\n' { return nil, ErrInvalid } parts[i] = string(data) } return parts, nil } // load reads entries from the append only database file and fills the database. // The file format uses the Redis append only file format, which is and a series // of RESP commands. For more information on RESP please read // http://redis.io/topics/protocol. The only supported RESP commands are DEL and // SET. func (db *DB) load() error { r := bufio.NewReader(db.file) for { var item = &dbItem{} parts, err := loadReadCommand(r) if err != nil { if err == errValidEOF { break } if err == io.EOF { return io.ErrUnexpectedEOF } return err } if len(parts) == 0 { continue } switch strings.ToLower(parts[0]) { default: return ErrInvalid case "set": if len(parts) < 3 || len(parts) == 4 || len(parts) > 5 { return ErrInvalid } item.key, item.val = parts[1], parts[2] if len(parts) == 5 { if strings.ToLower(parts[3]) != "ex" { return ErrInvalid } ex, err := strconv.ParseInt(parts[4], 10, 64) if err != nil { return err } dur := time.Duration(ex) * time.Second item.opts = &dbItemOpts{ ex: true, exat: time.Now().Add(dur), } } db.insertIntoDatabase(item) case "del": if len(parts) != 2 { return ErrInvalid } item.key = parts[1] db.deleteFromDatabase(item) } } pos, err := db.file.Seek(0, 2) if err != nil { return err } db.lastaofsz = int(pos) return nil } // managed calls a block of code that is fully contained in a transaction. // This method is intended to be wrapped by Update and View func (db *DB) managed(writable bool, fn func(tx *Tx) error) (err error) { var tx *Tx tx, err = db.begin(writable) if err != nil { return } defer func() { if err != nil { // The caller returned an error. We must rollback. _ = tx.rollback() return } if writable { // Everything went well. Lets Commit() err = tx.commit() } else { // read-only transaction can only roll back. err = tx.rollback() } }() tx.funcd = true defer func() { tx.funcd = false }() err = fn(tx) return } // View executes a function within a managed read-only transaction. // When a non-nil error is returned from the function that error will be return // to the caller of View(). // // Executing a manual commit or rollback from inside the function will result // in a panic. func (db *DB) View(fn func(tx *Tx) error) error { return db.managed(false, fn) } // Update executes a function within a managed read/write transaction. // The transaction has been committed when no error is returned. // In the event that an error is returned, the transaction will be rolled back. // When a non-nil error is returned from the function, the transaction will be // rolled back and the that error will be return to the caller of Update(). // // Executing a manual commit or rollback from inside the function will result // in a panic. func (db *DB) Update(fn func(tx *Tx) error) error { return db.managed(true, fn) } // get return an item or nil if not found. func (db *DB) get(key string) *dbItem { item := db.keys.Get(&dbItem{key: key}) if item != nil { return item.(*dbItem) } return nil } // Tx represents a transaction on the database. This transaction can either be // read-only or read/write. Read-only transactions can be used for retrieving // values for keys and iterating through keys and values. Read/write // transactions can set and delete keys. // // All transactions must be committed or rolled-back when done. type Tx struct { db *DB // the underlying database. writable bool // when false mutable operations fail. funcd bool // when true Commit and Rollback panic. rollbacks map[string]*dbItem // cotnains details for rolling back tx. commits map[string]*dbItem // contains details for committing tx. } // begin opens a new transaction. // Multiple read-only transactions can be opened at the same time but there can // only be one read/write transaction at a time. Attempting to open a read/write // transactions while another one is in progress will result in blocking until // the current read/write transaction is completed. // // All transactions must be closed by calling Commit() or Rollback() when done. func (db *DB) begin(writable bool) (*Tx, error) { tx := &Tx{ db: db, writable: writable, } tx.lock() if db.closed { tx.unlock() return nil, ErrDatabaseClosed } if writable { tx.rollbacks = make(map[string]*dbItem) if db.persist { tx.commits = make(map[string]*dbItem) } } return tx, nil } // lock locks the database based on the transaction type. func (tx *Tx) lock() { if tx.writable { tx.db.mu.Lock() } else { tx.db.mu.RLock() } } // unlock unlocks the database based on the transaction type. func (tx *Tx) unlock() { if tx.writable { tx.db.mu.Unlock() } else { tx.db.mu.RUnlock() } } // rollbackInner handles the underlying rollback logic. // Intended to be called from Commit() and Rollback(). func (tx *Tx) rollbackInner() { for key, item := range tx.rollbacks { tx.db.deleteFromDatabase(&dbItem{key: key}) if item != nil { // When an item is not nil, we will need to reinsert that item // into the database overwriting the current one. tx.db.insertIntoDatabase(item) } } } // commit writes all changes to disk. // An error is returned when a write error occurs, or when a Commit() is called // from a read-only transaction. func (tx *Tx) commit() error { if tx.funcd { panic("managed tx commit not allowed") } if tx.db == nil { return ErrTxClosed } else if !tx.writable { return ErrTxNotWritable } var err error if tx.db.persist && len(tx.commits) > 0 { // Each committed record is written to disk for key, item := range tx.commits { if item == nil { (&dbItem{key: key}).writeDeleteTo(tx.db.bufw) } else { item.writeSetTo(tx.db.bufw) } } // Flushing the buffer only once per transaction. // If this operation fails then the write did failed and we must // rollback. if err = tx.db.bufw.Flush(); err != nil { tx.rollbackInner() } if tx.db.config.SyncPolicy == Always { _ = tx.db.file.Sync() } // Increment the number of flushes. The background syncing uses this. tx.db.flushes++ } // Unlock the database and allow for another writable transaction. tx.unlock() // Clear the db field to disable this transaction from future use. tx.db = nil return err } // rollback closes the transaction and reverts all mutable operations that // were performed on the transaction such as Set() and Delete(). // // Read-only transactions can only be rolled back, not committed. func (tx *Tx) rollback() error { if tx.funcd { panic("managed tx rollback not allowed") } if tx.db == nil { return ErrTxClosed } // The rollback func does the heavy lifting. if tx.writable { tx.rollbackInner() } // unlock the database for more transactions. tx.unlock() // Clear the db field to disable this transaction from future use. tx.db = nil return nil } // dbItemOpts holds various meta information about an item. type dbItemOpts struct { ex bool // does this item expire? exat time.Time // when does this item expire? } type dbItem struct { key, val string // the binary key and value opts *dbItemOpts // optional meta information } // writeHead writes the resp header part func writeHead(wr *bufio.Writer, c byte, n int) { _ = wr.WriteByte(c) _, _ = wr.WriteString(strconv.FormatInt(int64(n), 10)) _, _ = wr.WriteString("\r\n") } // writeMultiBulk writes a resp array func writeMultiBulk(wr *bufio.Writer, bulks ...string) { writeHead(wr, '*', len(bulks)) for _, bulk := range bulks { writeHead(wr, '$', len(bulk)) _, _ = wr.WriteString(bulk) _, _ = wr.WriteString("\r\n") } } // writeSetTo writes an item as a single SET record to the a bufio Writer. func (dbi *dbItem) writeSetTo(wr *bufio.Writer) { if dbi.opts != nil && dbi.opts.ex { ex := strconv.FormatUint( uint64(dbi.opts.exat.Sub(time.Now())/time.Second), 10, ) writeMultiBulk(wr, "set", dbi.key, dbi.val, "ex", ex) } else { writeMultiBulk(wr, "set", dbi.key, dbi.val) } } // writeSetTo writes an item as a single DEL record to the a bufio Writer. func (dbi *dbItem) writeDeleteTo(wr *bufio.Writer) { writeMultiBulk(wr, "del", dbi.key) } // expired evaluates id the item has expired. This will always return false when // the item does not have `opts.ex` set to true. func (dbi *dbItem) expired() bool { return dbi.opts != nil && dbi.opts.ex && time.Now().After(dbi.opts.exat) } // MaxTime from http://stackoverflow.com/questions/25065055#32620397 // This is a long time in the future. It's an imaginary number that is // used for b-tree ordering. var maxTime = time.Unix(1<<63-62135596801, 999999999) // expiresAt will return the time when the item will expire. When an item does // not expire `maxTime` is used. func (dbi *dbItem) expiresAt() time.Time { if dbi.opts == nil || !dbi.opts.ex { return maxTime } return dbi.opts.exat } // Less determines if a b-tree item is less than another. This is required // for ordering, inserting, and deleting items from a b-tree. It's important // to note that the ctx parameter is used to help with determine which // formula to use on an item. Each b-tree should use a different ctx when // sharing the same item. func (dbi *dbItem) Less(item btree.Item, ctx interface{}) bool { dbi2 := item.(*dbItem) switch ctx := ctx.(type) { case *exctx: // The expires b-tree formula if dbi2.expiresAt().After(dbi.expiresAt()) { return true } if dbi.expiresAt().After(dbi2.expiresAt()) { return false } case *index: if ctx.less != nil { // Using an index if ctx.less(dbi.val, dbi2.val) { return true } if ctx.less(dbi2.val, dbi.val) { return false } } } // Always fall back to the key comparison. This creates absolute uniqueness. return dbi.key < dbi2.key } // Rect converts a string to a rectangle. // An invalid rectangle will cause a panic. func (dbi *dbItem) Rect(ctx interface{}) (min, max []float64) { switch ctx := ctx.(type) { case *index: return ctx.rect(dbi.val) } return nil, nil } // SetOptions represents options that may be included with the Set() command. type SetOptions struct { // Expires indicates that the Set() key-value will expire Expires bool // TTL is how much time the key-value will exist in the database // before being evicted. The Expires field must also be set to true. // TTL stands for Time-To-Live. TTL time.Duration } // Set inserts or replaces an item in the database based on the key. // The opt params may be used for additional functionality such as forcing // the item to be evicted at a specified time. When the return value // for err is nil the operation succeeded. When the return value of // replaced is true, then the operaton replaced an existing item whose // value will be returned through the previousValue variable. // The results of this operation will not be available to other // transactions until the current transaction has successfully committed. func (tx *Tx) Set(key, value string, opts *SetOptions) (previousValue string, replaced bool, err error) { if tx.db == nil { return "", false, ErrTxClosed } else if !tx.writable { return "", false, ErrTxNotWritable } item := &dbItem{key: key, val: value} if opts != nil { if opts.Expires { // The caller is requesting that this item expires. Convert the // TTL to an absolute time and bind it to the item. item.opts = &dbItemOpts{ex: true, exat: time.Now().Add(opts.TTL)} } } // Insert the item into the keys tree. prev := tx.db.insertIntoDatabase(item) if prev == nil { // An item with the same key did not previously exist. Let's create a // rollback entry with a nil value. A nil value indicates that the // entry should be deleted on rollback. When the value is *not* nil, // that means the entry should be reverted. tx.rollbacks[key] = nil } else { // A previous item already exists in the database. Let's create a // rollback entry with the item as the value. We need to check the map // to see if there isn't already an item that matches the same key. if _, ok := tx.rollbacks[key]; !ok { tx.rollbacks[key] = prev } if !item.expired() { previousValue, replaced = item.val, true } } // For commits we simply assign the item to the map. We use this map to // write the entry to disk. if tx.db.persist { tx.commits[key] = item } return previousValue, replaced, nil } // Get returns a value for a key. If the item does not exist or if the item // has expired then ErrNotFound is returned. func (tx *Tx) Get(key string) (val string, err error) { if tx.db == nil { return "", ErrTxClosed } item := tx.db.get(key) if item == nil { return "", ErrNotFound } if item.expired() { // The item exists in the tree, but has expired. Let's assume that // the caller is only interested in items that have not expired. return "", ErrNotFound } return item.val, nil } // Delete removes an item from the database based on the item's key. If the item // does not exist or if the item has expired then ErrNotFound is returned. // // Only writable transaction can be used for Delete() calls. func (tx *Tx) Delete(key string) (val string, err error) { if tx.db == nil { return "", ErrTxClosed } else if !tx.writable { return "", ErrTxNotWritable } item := tx.db.deleteFromDatabase(&dbItem{key: key}) if item == nil { return "", ErrNotFound } if _, ok := tx.rollbacks[key]; !ok { tx.rollbacks[key] = item } if tx.db.persist { tx.commits[key] = nil } // Even though the item has been deleted, we still want to check // if it has expired. An expired item should not be returned. if item.expired() { // The item exists in the tree, but has expired. Let's assume that // the caller is only interested in items that have not expired. return "", ErrNotFound } return item.val, nil } // TTL returns the remaining time-to-live for an item. // A negative duration will be returned for items that do not have an // expiration. func (tx *Tx) TTL(key string) (time.Duration, error) { if tx.db == nil { return 0, ErrTxClosed } item := tx.db.get(key) if item == nil { return 0, ErrNotFound } else if item.opts == nil || !item.opts.ex { return -1, nil } dur := item.opts.exat.Sub(time.Now()) if dur < 0 { return 0, ErrNotFound } return dur, nil } // scan iterates through a specified index and calls user-defined iterator // function for each item encountered. // The desc param indicates that the iterator should descend. // The gt param indicates that there is a greaterThan limit. // The lt param indicates that there is a lessThan limit. // The index param tells the scanner to use the specified index tree. An // empty string for the index means to scan the keys, not the values. // The start and stop params are the greaterThan, lessThan limits. For // descending order, these will be lessThan, greaterThan. // An error will be returned if the tx is closed or the index is not found. func (tx *Tx) scan( desc, gt, lt bool, index, start, stop string, iterator Iterator, ) error { if tx.db == nil { return ErrTxClosed } // wrap a btree specific iterator around the user-defined iterator. iter := func(item btree.Item) bool { dbi := item.(*dbItem) return iterator(dbi.key, dbi.val) } var tr *btree.BTree if index == "" { // empty index means we will use the keys tree. tr = tx.db.keys } else { idx := tx.db.idxs[index] if idx == nil { // index was not found. return error return ErrNotFound } tr = idx.btr if tr == nil { return nil } } // create some limit items var itemA, itemB *dbItem if gt || lt { itemA = &dbItem{key: start} itemB = &dbItem{key: stop} } // execute the scan on the underlying tree. if desc { if gt { if lt { tr.DescendRange(itemA, itemB, iter) } else { tr.DescendGreaterThan(itemA, iter) } } else if lt { tr.DescendLessOrEqual(itemA, iter) } else { tr.Descend(iter) } } else { if gt { if lt { tr.AscendRange(itemA, itemB, iter) } else { tr.AscendGreaterOrEqual(itemA, iter) } } else if lt { tr.AscendLessThan(itemA, iter) } else { tr.Ascend(iter) } } return nil } // Ascend calls the iterator for every item in the database within the range // [first, last], until iterator returns false. // When an index is provided, the results will be ordered by the item values // as specified by the less() function of the defined index. // When an index is not provided, the results will be ordered by the item key. // An invalid index will return an error. func (tx *Tx) Ascend(index string, iterator Iterator) error { return tx.scan(false, false, false, index, "", "", iterator) } // AscendGreaterOrEqual calls the iterator for every item in the database within // the range [pivot, last], until iterator returns false. // When an index is provided, the results will be ordered by the item values // as specified by the less() function of the defined index. // When an index is not provided, the results will be ordered by the item key. // An invalid index will return an error. func (tx *Tx) AscendGreaterOrEqual( index, pivot string, iterator Iterator, ) error { return tx.scan(false, true, false, index, pivot, "", iterator) } // AscendLessThan calls the iterator for every item in the database within the // range [first, pivot), until iterator returns false. // When an index is provided, the results will be ordered by the item values // as specified by the less() function of the defined index. // When an index is not provided, the results will be ordered by the item key. // An invalid index will return an error. func (tx *Tx) AscendLessThan(index, pivot string, iterator Iterator) error { return tx.scan(false, false, true, index, pivot, "", iterator) } // AscendRange calls the iterator for every item in the database within // the range [greaterOrEqual, lessThan), until iterator returns false. // When an index is provided, the results will be ordered by the item values // as specified by the less() function of the defined index. // When an index is not provided, the results will be ordered by the item key. // An invalid index will return an error. func (tx *Tx) AscendRange(index, greaterOrEqual, lessThan string, iterator Iterator) error { return tx.scan( false, true, true, index, greaterOrEqual, lessThan, iterator, ) } // Descend calls the iterator for every item in the database within the range // [last, first], until iterator returns false. // When an index is provided, the results will be ordered by the item values // as specified by the less() function of the defined index. // When an index is not provided, the results will be ordered by the item key. // An invalid index will return an error. func (tx *Tx) Descend(index string, iterator Iterator) error { return tx.scan(true, false, false, index, "", "", iterator) } // DescendGreaterThan calls the iterator for every item in the database within // the range [last, pivot), until iterator returns false. // When an index is provided, the results will be ordered by the item values // as specified by the less() function of the defined index. // When an index is not provided, the results will be ordered by the item key. // An invalid index will return an error. func (tx *Tx) DescendGreaterThan(index, pivot string, iterator Iterator) error { return tx.scan(true, true, false, index, pivot, "", iterator) } // DescendLessOrEqual calls the iterator for every item in the database within // the range [pivot, first], until iterator returns false. // When an index is provided, the results will be ordered by the item values // as specified by the less() function of the defined index. // When an index is not provided, the results will be ordered by the item key. // An invalid index will return an error. func (tx *Tx) DescendLessOrEqual(index, pivot string, iterator Iterator) error { return tx.scan(true, false, true, index, pivot, "", iterator) } // DescendRange calls the iterator for every item in the database within // the range [lessOrEqual, greaterThan), until iterator returns false. // When an index is provided, the results will be ordered by the item values // as specified by the less() function of the defined index. // When an index is not provided, the results will be ordered by the item key. // An invalid index will return an error. func (tx *Tx) DescendRange(index, lessOrEqual, greaterThan string, iterator Iterator) error { return tx.scan( true, true, true, index, lessOrEqual, greaterThan, iterator, ) } // rect is used by Intersects type rect struct { min, max []float64 } func (r *rect) Rect(ctx interface{}) (min, max []float64) { return r.min, r.max } // Intersects searches for rectangle items that intersect a target rect. // The specified index must have been created by AddIndex() and the target // is represented by the rect string. This string will be processed by the // same bounds function that was passed to the CreateSpatialIndex() function. // An invalid index will return an error. func (tx *Tx) Intersects(index, bounds string, iterator Iterator) error { if tx.db == nil { return ErrTxClosed } if index == "" { // cannot search on keys tree. just return nil. return nil } // wrap a rtree specific iterator around the user-defined iterator. iter := func(item rtree.Item) bool { dbi := item.(*dbItem) return iterator(dbi.key, dbi.val) } idx := tx.db.idxs[index] if idx == nil { // index was not found. return error return ErrNotFound } if idx.rtr == nil { // not an r-tree index. just return nil return nil } // execute the search var min, max []float64 if idx.rect != nil { min, max = idx.rect(bounds) } idx.rtr.Search(&rect{min, max}, iter) return nil } // Len returns the number of items in the database func (tx *Tx) Len() (int, error) { if tx.db == nil { return 0, ErrTxClosed } return tx.db.keys.Len(), nil } // Rect is helper function that returns a string representation // of a rect. IndexRect() is the reverse function and can be used // to generate a rect from a string. func Rect(min, max []float64) string { if min == nil && max == nil { return "" } diff := len(min) != len(max) if !diff { for i := 0; i < len(min); i++ { if min[i] != max[i] { diff = true break } } } var b bytes.Buffer _ = b.WriteByte('[') for i, v := range min { if i > 0 { _ = b.WriteByte(' ') } _, _ = b.WriteString(strconv.FormatFloat(v, 'f', -1, 64)) } if diff { _, _ = b.WriteString("],[") for i, v := range max { if i > 0 { _ = b.WriteByte(' ') } _, _ = b.WriteString(strconv.FormatFloat(v, 'f', -1, 64)) } } _ = b.WriteByte(']') return b.String() } // Point is a helper function that converts a series of float64s // to a rectangle for a spatial index. func Point(coords ...float64) string { return Rect(coords, coords) } // IndexRect is a helper function that converts string to a rect. // Rect() is the reverse function and can be used to generate a string // from a rect. func IndexRect(a string) (min, max []float64) { parts := strings.Split(a, ",") for i := 0; i < len(parts) && i < 2; i++ { part := parts[i] if len(part) >= 2 && part[0] == '[' && part[len(part)-1] == ']' { pieces := strings.Split(part[1:len(part)-1], " ") if i == 0 { min = make([]float64, 0, len(pieces)) } else { max = make([]float64, 0, len(pieces)) } for j := 0; j < len(pieces); j++ { piece := pieces[j] if piece != "" { n, _ := strconv.ParseFloat(piece, 64) if i == 0 { min = append(min, n) } else { max = append(max, n) } } } } } if len(parts) == 1 { max = min } return } // IndexString is a helper function that return true if 'a' is less than 'b'. // This is a case-insensitive comparison. Use the IndexBinary() for comparing // case-sensitive strings. func IndexString(a, b string) bool { // This is a faster approach to strings.ToLower because it does not // create new strings. for i := 0; i < len(a) && i < len(b); i++ { ca, cb := a[i], b[i] if ca >= 'A' && ca <= 'Z' { ca += 32 } if cb >= 'A' && cb <= 'Z' { cb += 32 } if ca < cb { return true } else if ca > cb { return false } } return len(a) < len(b) } // IndexBinary is a helper function that returns true if 'a' is less than 'b'. // This compares the raw binary of the string. func IndexBinary(a, b string) bool { return a < b } // IndexInt is a helper function that returns true if 'a' is less than 'b'. func IndexInt(a, b string) bool { ia, _ := strconv.ParseInt(a, 10, 64) ib, _ := strconv.ParseInt(b, 10, 64) return ia < ib } // IndexUint is a helper function that returns true if 'a' is less than 'b'. // This compares uint64s that are added to the database using the // Uint() conversion function. func IndexUint(a, b string) bool { ia, _ := strconv.ParseUint(a, 10, 64) ib, _ := strconv.ParseUint(b, 10, 64) return ia < ib } // IndexFloat is a helper function that returns true if 'a' is less than 'b'. // This compares float64s that are added to the database using the // Float() conversion function. func IndexFloat(a, b string) bool { ia, _ := strconv.ParseFloat(a, 64) ib, _ := strconv.ParseFloat(b, 64) return ia < ib }