233 lines
6.1 KiB
Go
233 lines
6.1 KiB
Go
package matchfinder
|
|
|
|
import (
|
|
"encoding/binary"
|
|
"math/bits"
|
|
"sort"
|
|
)
|
|
|
|
// MultiHash is an implementation of the MatchFinder
|
|
// interface that uses multiple hashes of different lengths.
|
|
type MultiHash struct {
|
|
// MaxDistance is the maximum distance (in bytes) to look back for
|
|
// a match. The default is 65535.
|
|
MaxDistance int
|
|
|
|
// MinLength is the length of the shortest match to return.
|
|
// The default is 4.
|
|
MinLength int
|
|
|
|
// HashLengths is a list of the hashes to use, with the number of
|
|
// bytes to use for each. For example, to to use 4-byte, 7-byte, and
|
|
// 10-byte hashes, set HashLengths to []int{4, 7, 10}.
|
|
// The minimum length is 4.
|
|
HashLengths []int
|
|
|
|
// TableBits is the number of bits in the hash table indexes.
|
|
// The default is 17 (128K entries).
|
|
TableBits int
|
|
|
|
// DistanceBitCost is used when comparing two matches to see
|
|
// which is better. The comparison is primarily based on the length
|
|
// of the matches, but it can also take the distance into account,
|
|
// in terms of the number of bits needed to represent the distance.
|
|
// One byte of length is given a score of 256, so 32 (256/8) would
|
|
// be a reasonable first guess for the value of one bit.
|
|
// (The default is 0, which bases the comparison solely on length.)
|
|
DistanceBitCost int
|
|
|
|
tables [][]uint32
|
|
|
|
history []byte
|
|
}
|
|
|
|
func (q *MultiHash) Reset() {
|
|
for _, t := range q.tables {
|
|
for i := range t {
|
|
t[i] = 0
|
|
}
|
|
}
|
|
q.history = q.history[:0]
|
|
}
|
|
|
|
func (q *MultiHash) score(m absoluteMatch) int {
|
|
return (m.End-m.Start)*256 + bits.LeadingZeros32(uint32(m.Start-m.Match))*q.DistanceBitCost
|
|
}
|
|
|
|
func (q *MultiHash) FindMatches(dst []Match, src []byte) []Match {
|
|
if q.MaxDistance == 0 {
|
|
q.MaxDistance = 65535
|
|
}
|
|
if q.MinLength == 0 {
|
|
q.MinLength = 4
|
|
}
|
|
if q.TableBits == 0 {
|
|
q.TableBits = 17
|
|
}
|
|
if len(q.tables) < len(q.HashLengths) {
|
|
q.tables = make([][]uint32, len(q.HashLengths))
|
|
for i := range q.tables {
|
|
q.tables[i] = make([]uint32, 1<<q.TableBits)
|
|
}
|
|
}
|
|
sort.Ints(q.HashLengths)
|
|
maxHashLen := q.HashLengths[len(q.HashLengths)-1]
|
|
|
|
e := matchEmitter{Dst: dst}
|
|
|
|
if len(q.history) > q.MaxDistance*2 {
|
|
// Trim down the history buffer.
|
|
delta := len(q.history) - q.MaxDistance
|
|
copy(q.history, q.history[delta:])
|
|
q.history = q.history[:q.MaxDistance]
|
|
|
|
for _, t := range q.tables {
|
|
for i, v := range t {
|
|
newV := int(v) - delta
|
|
if newV < 0 {
|
|
newV = 0
|
|
}
|
|
t[i] = uint32(newV)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Append src to the history buffer.
|
|
e.NextEmit = len(q.history)
|
|
q.history = append(q.history, src...)
|
|
src = q.history
|
|
|
|
// matches stores the matches that have been found but not emitted,
|
|
// in reverse order. (matches[0] is the most recent one.)
|
|
var matches [3]absoluteMatch
|
|
|
|
candidates := make([]int, len(q.HashLengths))
|
|
|
|
for i := e.NextEmit; i < len(src)-maxHashLen; i++ {
|
|
if matches[0] != (absoluteMatch{}) && i >= matches[0].End {
|
|
// We have found some matches, and we're far enough along that we probably
|
|
// won't find overlapping matches, so we might as well emit them.
|
|
if matches[1] != (absoluteMatch{}) {
|
|
e.trim(matches[1], matches[0].Start, q.MinLength)
|
|
}
|
|
e.emit(matches[0])
|
|
matches = [3]absoluteMatch{}
|
|
}
|
|
|
|
// Calculate and store the hashes.
|
|
h := uint32(0x811c9dc5) // FNV-32 offset basis
|
|
nb := 0
|
|
for j, hashLen := range q.HashLengths {
|
|
for nb < hashLen {
|
|
h ^= uint32(src[i+nb])
|
|
h *= 0x01000193 // FNV-32 prime
|
|
nb++
|
|
}
|
|
index := h >> (32 - q.TableBits)
|
|
candidates[j] = int(q.tables[j][index])
|
|
q.tables[j][index] = uint32(i)
|
|
}
|
|
|
|
// Look for a match.
|
|
var currentMatch absoluteMatch
|
|
|
|
if i < matches[0].End {
|
|
// If we're looking for an overlapping match, we only need to check the
|
|
// hash that ends 2 bytes after the end of the previous match.
|
|
for j, candidate := range candidates {
|
|
if i+q.HashLengths[j] != matches[0].End+2 {
|
|
continue
|
|
}
|
|
if candidate == 0 || i-candidate > q.MaxDistance {
|
|
break
|
|
}
|
|
if binary.LittleEndian.Uint32(src[candidate:]) != binary.LittleEndian.Uint32(src[i:]) {
|
|
break
|
|
}
|
|
m := extendMatch2(src, i, candidate, e.NextEmit)
|
|
if m.End-m.Start >= q.HashLengths[j] {
|
|
currentMatch = m
|
|
}
|
|
}
|
|
} else {
|
|
for j, candidate := range candidates {
|
|
if candidate == 0 || i-candidate > q.MaxDistance {
|
|
break
|
|
}
|
|
if i-candidate == matches[0].Start-matches[0].Match {
|
|
// Don't bother to check for the same match we already have.
|
|
continue
|
|
}
|
|
if currentMatch.End-currentMatch.Start > q.HashLengths[j] {
|
|
// Don't bother with hashes that are shorter than the current match.
|
|
continue
|
|
}
|
|
if binary.LittleEndian.Uint32(src[candidate:]) != binary.LittleEndian.Uint32(src[i:]) {
|
|
break
|
|
}
|
|
m := extendMatch2(src, i, candidate, e.NextEmit)
|
|
if m.End-m.Start > q.MinLength && q.score(m) > q.score(currentMatch) {
|
|
currentMatch = m
|
|
}
|
|
}
|
|
}
|
|
|
|
if currentMatch == (absoluteMatch{}) || q.score(currentMatch) <= q.score(matches[0]) {
|
|
continue
|
|
}
|
|
|
|
matches = [3]absoluteMatch{
|
|
currentMatch,
|
|
matches[0],
|
|
matches[1],
|
|
}
|
|
|
|
if matches[2] == (absoluteMatch{}) {
|
|
continue
|
|
}
|
|
|
|
// We have three matches, so it's time to emit one and/or eliminate one.
|
|
switch {
|
|
case matches[0].Start < matches[2].End:
|
|
// The first and third matches overlap; discard the one in between.
|
|
matches = [3]absoluteMatch{
|
|
matches[0],
|
|
matches[2],
|
|
absoluteMatch{},
|
|
}
|
|
|
|
case matches[0].Start < matches[2].End+q.MinLength:
|
|
// The first and third matches don't overlap, but there's no room for
|
|
// another match between them. Emit the first match and discard the second.
|
|
e.emit(matches[2])
|
|
matches = [3]absoluteMatch{
|
|
matches[0],
|
|
absoluteMatch{},
|
|
absoluteMatch{},
|
|
}
|
|
|
|
default:
|
|
// Emit the first match, shortening it if necessary to avoid overlap with the second.
|
|
e.trim(matches[2], matches[1].Start, q.MinLength)
|
|
matches[2] = absoluteMatch{}
|
|
}
|
|
}
|
|
|
|
// We've found all the matches now; emit the remaining ones.
|
|
if matches[1] != (absoluteMatch{}) {
|
|
e.trim(matches[1], matches[0].Start, q.MinLength)
|
|
}
|
|
if matches[0] != (absoluteMatch{}) {
|
|
e.emit(matches[0])
|
|
}
|
|
|
|
dst = e.Dst
|
|
if e.NextEmit < len(src) {
|
|
dst = append(dst, Match{
|
|
Unmatched: len(src) - e.NextEmit,
|
|
})
|
|
}
|
|
|
|
return dst
|
|
}
|