brotli/matchfinder/m0.go

170 lines
4.7 KiB
Go

package matchfinder
import (
"encoding/binary"
)
// M0 is an implementation of the MatchFinder interface based
// on the algorithm used by snappy, but modified to be more like the algorithm
// used by compression level 0 of the brotli reference implementation.
//
// It has a maximum block size of 65536 bytes.
type M0 struct {
// Lazy turns on "lazy matching," for higher compression but less speed.
Lazy bool
MaxDistance int
MaxLength int
}
func (M0) Reset() {}
const (
m0HashLen = 5
m0TableBits = 14
m0TableSize = 1 << m0TableBits
m0Shift = 32 - m0TableBits
// m0TableMask is redundant, but helps the compiler eliminate bounds
// checks.
m0TableMask = m0TableSize - 1
)
func (m M0) hash(data uint64) uint64 {
hash := (data << (64 - 8*m0HashLen)) * hashMul64
return hash >> (64 - m0TableBits)
}
// FindMatches looks for matches in src, appends them to dst, and returns dst.
// src must not be longer than 65536 bytes.
func (m M0) FindMatches(dst []Match, src []byte) []Match {
const inputMargin = 16 - 1
const minNonLiteralBlockSize = 1 + 1 + inputMargin
if len(src) < minNonLiteralBlockSize {
dst = append(dst, Match{
Unmatched: len(src),
})
return dst
}
if len(src) > 65536 {
panic("block too long")
}
var table [m0TableSize]uint16
// sLimit is when to stop looking for offset/length copies. The inputMargin
// lets us use a fast path for emitLiteral in the main loop, while we are
// looking for copies.
sLimit := len(src) - inputMargin
// nextEmit is where in src the next emitLiteral should start from.
nextEmit := 0
// The encoded form must start with a literal, as there are no previous
// bytes to copy, so we start looking for hash matches at s == 1.
s := 1
nextHash := m.hash(binary.LittleEndian.Uint64(src[s:]))
for {
// Copied from the C++ snappy implementation:
//
// Heuristic match skipping: If 32 bytes are scanned with no matches
// found, start looking only at every other byte. If 32 more bytes are
// scanned (or skipped), look at every third byte, etc.. When a match
// is found, immediately go back to looking at every byte. This is a
// small loss (~5% performance, ~0.1% density) for compressible data
// due to more bookkeeping, but for non-compressible data (such as
// JPEG) it's a huge win since the compressor quickly "realizes" the
// data is incompressible and doesn't bother looking for matches
// everywhere.
//
// The "skip" variable keeps track of how many bytes there are since
// the last match; dividing it by 32 (ie. right-shifting by five) gives
// the number of bytes to move ahead for each iteration.
skip := 32
nextS := s
candidate := 0
for {
s = nextS
bytesBetweenHashLookups := skip >> 5
nextS = s + bytesBetweenHashLookups
skip += bytesBetweenHashLookups
if nextS > sLimit {
goto emitRemainder
}
candidate = int(table[nextHash&m0TableMask])
table[nextHash&m0TableMask] = uint16(s)
nextHash = m.hash(binary.LittleEndian.Uint64(src[nextS:]))
if m.MaxDistance != 0 && s-candidate > m.MaxDistance {
continue
}
if binary.LittleEndian.Uint32(src[s:]) == binary.LittleEndian.Uint32(src[candidate:]) {
break
}
}
// Invariant: we have a 4-byte match at s.
base := s
s = extendMatch(src, candidate+4, s+4)
origBase := base
if m.Lazy && base+1 < sLimit {
newBase := base + 1
h := m.hash(binary.LittleEndian.Uint64(src[newBase:]))
newCandidate := int(table[h&m0TableMask])
table[h&m0TableMask] = uint16(newBase)
okDistance := true
if m.MaxDistance != 0 && newBase-newCandidate > m.MaxDistance {
okDistance = false
}
if okDistance && binary.LittleEndian.Uint32(src[newBase:]) == binary.LittleEndian.Uint32(src[newCandidate:]) {
newS := extendMatch(src, newCandidate+4, newBase+4)
if newS-newBase > s-base+1 {
s = newS
base = newBase
candidate = newCandidate
}
}
}
if m.MaxLength != 0 && s-base > m.MaxLength {
s = base + m.MaxLength
}
dst = append(dst, Match{
Unmatched: base - nextEmit,
Length: s - base,
Distance: base - candidate,
})
nextEmit = s
if s >= sLimit {
goto emitRemainder
}
if m.Lazy {
// If lazy matching is enabled, we update the hash table for
// every byte in the match.
for i := origBase + 2; i < s-1; i++ {
x := binary.LittleEndian.Uint64(src[i:])
table[m.hash(x)&m0TableMask] = uint16(i)
}
}
// We could immediately start working at s now, but to improve
// compression we first update the hash table at s-1 and at s.
x := binary.LittleEndian.Uint64(src[s-1:])
prevHash := m.hash(x >> 0)
table[prevHash&m0TableMask] = uint16(s - 1)
nextHash = m.hash(x >> 8)
}
emitRemainder:
if nextEmit < len(src) {
dst = append(dst, Match{
Unmatched: len(src) - nextEmit,
})
}
return dst
}