package brotli import ( "io" "math" ) /* Copyright 2016 Google Inc. All Rights Reserved. Distributed under MIT license. See file LICENSE for detail or copy at https://opensource.org/licenses/MIT */ /** Minimal value for ::BROTLI_PARAM_LGWIN parameter. */ const minWindowBits = 10 /** * Maximal value for ::BROTLI_PARAM_LGWIN parameter. * * @note equal to @c BROTLI_MAX_DISTANCE_BITS constant. */ const maxWindowBits = 24 /** * Maximal value for ::BROTLI_PARAM_LGWIN parameter * in "Large Window Brotli" (32-bit). */ const largeMaxWindowBits = 30 /** Minimal value for ::BROTLI_PARAM_LGBLOCK parameter. */ const minInputBlockBits = 16 /** Maximal value for ::BROTLI_PARAM_LGBLOCK parameter. */ const maxInputBlockBits = 24 /** Minimal value for ::BROTLI_PARAM_QUALITY parameter. */ const minQuality = 0 /** Maximal value for ::BROTLI_PARAM_QUALITY parameter. */ const maxQuality = 11 /** Options for ::BROTLI_PARAM_MODE parameter. */ const ( modeGeneric = 0 modeText = 1 modeFont = 2 ) /** Default value for ::BROTLI_PARAM_QUALITY parameter. */ const defaultQuality = 11 /** Default value for ::BROTLI_PARAM_LGWIN parameter. */ const defaultWindow = 22 /** Default value for ::BROTLI_PARAM_MODE parameter. */ const defaultMode = modeGeneric /** Operations that can be performed by streaming encoder. */ const ( operationProcess = 0 operationFlush = 1 operationFinish = 2 operationEmitMetadata = 3 ) const ( streamProcessing = 0 streamFlushRequested = 1 streamFinished = 2 streamMetadataHead = 3 streamMetadataBody = 4 ) type Writer struct { dst io.Writer options WriterOptions params encoderParams hasher_ hasherHandle input_pos_ uint64 ringbuffer_ ringBuffer cmd_alloc_size_ uint commands_ []command num_commands_ uint num_literals_ uint last_insert_len_ uint last_flush_pos_ uint64 last_processed_pos_ uint64 dist_cache_ [numDistanceShortCodes]int saved_dist_cache_ [4]int last_bytes_ uint16 last_bytes_bits_ byte prev_byte_ byte prev_byte2_ byte storage_size_ uint storage_ []byte small_table_ [1 << 10]int large_table_ []int large_table_size_ uint cmd_depths_ [128]byte cmd_bits_ [128]uint16 cmd_code_ [512]byte cmd_code_numbits_ uint command_buf_ []uint32 literal_buf_ []byte next_out_ []byte available_out_ uint total_out_ uint tiny_buf_ struct { u64 [2]uint64 u8 [16]byte } remaining_metadata_bytes_ uint32 stream_state_ int is_last_block_emitted_ bool is_initialized_ bool } func inputBlockSize(s *Writer) uint { return uint(1) << uint(s.params.lgblock) } func unprocessedInputSize(s *Writer) uint64 { return s.input_pos_ - s.last_processed_pos_ } func remainingInputBlockSize(s *Writer) uint { var delta uint64 = unprocessedInputSize(s) var block_size uint = inputBlockSize(s) if delta >= uint64(block_size) { return 0 } return block_size - uint(delta) } /* Wraps 64-bit input position to 32-bit ring-buffer position preserving "not-a-first-lap" feature. */ func wrapPosition(position uint64) uint32 { var result uint32 = uint32(position) var gb uint64 = position >> 30 if gb > 2 { /* Wrap every 2GiB; The first 3GB are continuous. */ result = result&((1<<30)-1) | (uint32((gb-1)&1)+1)<<30 } return result } func getBrotliStorage(s *Writer, size uint) []byte { if s.storage_size_ < size { s.storage_ = nil s.storage_ = make([]byte, size) s.storage_size_ = size } return s.storage_ } func hashTableSize(max_table_size uint, input_size uint) uint { var htsize uint = 256 for htsize < max_table_size && htsize < input_size { htsize <<= 1 } return htsize } func getHashTable(s *Writer, quality int, input_size uint, table_size *uint) []int { var max_table_size uint = maxHashTableSize(quality) var htsize uint = hashTableSize(max_table_size, input_size) /* Use smaller hash table when input.size() is smaller, since we fill the table, incurring O(hash table size) overhead for compression, and if the input is short, we won't need that many hash table entries anyway. */ var table []int assert(max_table_size >= 256) if quality == fastOnePassCompressionQuality { /* Only odd shifts are supported by fast-one-pass. */ if htsize&0xAAAAA == 0 { htsize <<= 1 } } if htsize <= uint(len(s.small_table_)) { table = s.small_table_[:] } else { if htsize > s.large_table_size_ { s.large_table_size_ = htsize s.large_table_ = nil s.large_table_ = make([]int, htsize) } table = s.large_table_ } *table_size = htsize for i := 0; i < int(htsize); i++ { table[i] = 0 } return table } func encodeWindowBits(lgwin int, large_window bool, last_bytes *uint16, last_bytes_bits *byte) { if large_window { *last_bytes = uint16((lgwin&0x3F)<<8 | 0x11) *last_bytes_bits = 14 } else { if lgwin == 16 { *last_bytes = 0 *last_bytes_bits = 1 } else if lgwin == 17 { *last_bytes = 1 *last_bytes_bits = 7 } else if lgwin > 17 { *last_bytes = uint16((lgwin-17)<<1 | 0x01) *last_bytes_bits = 4 } else { *last_bytes = uint16((lgwin-8)<<4 | 0x01) *last_bytes_bits = 7 } } } /* Initializes the command and distance prefix codes for the first block. */ var initCommandPrefixCodes_kDefaultCommandDepths = [128]byte{ 0, 4, 4, 5, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 0, 0, 0, 4, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 10, 10, 10, 10, 10, 10, 0, 4, 4, 5, 5, 5, 6, 6, 7, 8, 8, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 7, 7, 7, 8, 10, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, } var initCommandPrefixCodes_kDefaultCommandBits = [128]uint16{ 0, 0, 8, 9, 3, 35, 7, 71, 39, 103, 23, 47, 175, 111, 239, 31, 0, 0, 0, 4, 12, 2, 10, 6, 13, 29, 11, 43, 27, 59, 87, 55, 15, 79, 319, 831, 191, 703, 447, 959, 0, 14, 1, 25, 5, 21, 19, 51, 119, 159, 95, 223, 479, 991, 63, 575, 127, 639, 383, 895, 255, 767, 511, 1023, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 27, 59, 7, 39, 23, 55, 30, 1, 17, 9, 25, 5, 0, 8, 4, 12, 2, 10, 6, 21, 13, 29, 3, 19, 11, 15, 47, 31, 95, 63, 127, 255, 767, 2815, 1791, 3839, 511, 2559, 1535, 3583, 1023, 3071, 2047, 4095, } var initCommandPrefixCodes_kDefaultCommandCode = []byte{ 0xff, 0x77, 0xd5, 0xbf, 0xe7, 0xde, 0xea, 0x9e, 0x51, 0x5d, 0xde, 0xc6, 0x70, 0x57, 0xbc, 0x58, 0x58, 0x58, 0xd8, 0xd8, 0x58, 0xd5, 0xcb, 0x8c, 0xea, 0xe0, 0xc3, 0x87, 0x1f, 0x83, 0xc1, 0x60, 0x1c, 0x67, 0xb2, 0xaa, 0x06, 0x83, 0xc1, 0x60, 0x30, 0x18, 0xcc, 0xa1, 0xce, 0x88, 0x54, 0x94, 0x46, 0xe1, 0xb0, 0xd0, 0x4e, 0xb2, 0xf7, 0x04, 0x00, } var initCommandPrefixCodes_kDefaultCommandCodeNumBits uint = 448 func initCommandPrefixCodes(cmd_depths []byte, cmd_bits []uint16, cmd_code []byte, cmd_code_numbits *uint) { copy(cmd_depths, initCommandPrefixCodes_kDefaultCommandDepths[:]) copy(cmd_bits, initCommandPrefixCodes_kDefaultCommandBits[:]) /* Initialize the pre-compressed form of the command and distance prefix codes. */ copy(cmd_code, initCommandPrefixCodes_kDefaultCommandCode) *cmd_code_numbits = initCommandPrefixCodes_kDefaultCommandCodeNumBits } /* Decide about the context map based on the ability of the prediction ability of the previous byte UTF8-prefix on the next byte. The prediction ability is calculated as Shannon entropy. Here we need Shannon entropy instead of 'BitsEntropy' since the prefix will be encoded with the remaining 6 bits of the following byte, and BitsEntropy will assume that symbol to be stored alone using Huffman coding. */ var kStaticContextMapContinuation = [64]uint32{ 1, 1, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, } var kStaticContextMapSimpleUTF8 = [64]uint32{ 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, } func chooseContextMap(quality int, bigram_histo []uint32, num_literal_contexts *uint, literal_context_map *[]uint32) { var monogram_histo = [3]uint32{0} var two_prefix_histo = [6]uint32{0} var total uint var i uint var dummy uint var entropy [4]float64 for i = 0; i < 9; i++ { monogram_histo[i%3] += bigram_histo[i] two_prefix_histo[i%6] += bigram_histo[i] } entropy[1] = shannonEntropy(monogram_histo[:], 3, &dummy) entropy[2] = (shannonEntropy(two_prefix_histo[:], 3, &dummy) + shannonEntropy(two_prefix_histo[3:], 3, &dummy)) entropy[3] = 0 for i = 0; i < 3; i++ { entropy[3] += shannonEntropy(bigram_histo[3*i:], 3, &dummy) } total = uint(monogram_histo[0] + monogram_histo[1] + monogram_histo[2]) assert(total != 0) entropy[0] = 1.0 / float64(total) entropy[1] *= entropy[0] entropy[2] *= entropy[0] entropy[3] *= entropy[0] if quality < minQualityForHqContextModeling { /* 3 context models is a bit slower, don't use it at lower qualities. */ entropy[3] = entropy[1] * 10 } /* If expected savings by symbol are less than 0.2 bits, skip the context modeling -- in exchange for faster decoding speed. */ if entropy[1]-entropy[2] < 0.2 && entropy[1]-entropy[3] < 0.2 { *num_literal_contexts = 1 } else if entropy[2]-entropy[3] < 0.02 { *num_literal_contexts = 2 *literal_context_map = kStaticContextMapSimpleUTF8[:] } else { *num_literal_contexts = 3 *literal_context_map = kStaticContextMapContinuation[:] } } /* Decide if we want to use a more complex static context map containing 13 context values, based on the entropy reduction of histograms over the first 5 bits of literals. */ var kStaticContextMapComplexUTF8 = [64]uint32{ 11, 11, 12, 12, 0, 0, 0, 0, 1, 1, 9, 9, 2, 2, 2, 2, 1, 1, 1, 1, 8, 3, 3, 3, 1, 1, 1, 1, 2, 2, 2, 2, 8, 4, 4, 4, 8, 7, 4, 4, 8, 0, 0, 0, 3, 3, 3, 3, 5, 5, 10, 5, 5, 5, 10, 5, 6, 6, 6, 6, 6, 6, 6, 6, } func shouldUseComplexStaticContextMap(input []byte, start_pos uint, length uint, mask uint, quality int, size_hint uint, num_literal_contexts *uint, literal_context_map *[]uint32) bool { /* Try the more complex static context map only for long data. */ if size_hint < 1<<20 { return false } else { var end_pos uint = start_pos + length var combined_histo = [32]uint32{0} var context_histo = [13][32]uint32{[32]uint32{0}} var total uint32 = 0 var entropy [3]float64 var dummy uint var i uint var utf8_lut contextLUT = getContextLUT(contextUTF8) /* To make entropy calculations faster and to fit on the stack, we collect histograms over the 5 most significant bits of literals. One histogram without context and 13 additional histograms for each context value. */ for ; start_pos+64 <= end_pos; start_pos += 4096 { var stride_end_pos uint = start_pos + 64 var prev2 byte = input[start_pos&mask] var prev1 byte = input[(start_pos+1)&mask] var pos uint /* To make the analysis of the data faster we only examine 64 byte long strides at every 4kB intervals. */ for pos = start_pos + 2; pos < stride_end_pos; pos++ { var literal byte = input[pos&mask] var context byte = byte(kStaticContextMapComplexUTF8[getContext(prev1, prev2, utf8_lut)]) total++ combined_histo[literal>>3]++ context_histo[context][literal>>3]++ prev2 = prev1 prev1 = literal } } entropy[1] = shannonEntropy(combined_histo[:], 32, &dummy) entropy[2] = 0 for i = 0; i < 13; i++ { entropy[2] += shannonEntropy(context_histo[i][0:], 32, &dummy) } entropy[0] = 1.0 / float64(total) entropy[1] *= entropy[0] entropy[2] *= entropy[0] /* The triggering heuristics below were tuned by compressing the individual files of the silesia corpus. If we skip this kind of context modeling for not very well compressible input (i.e. entropy using context modeling is 60% of maximal entropy) or if expected savings by symbol are less than 0.2 bits, then in every case when it triggers, the final compression ratio is improved. Note however that this heuristics might be too strict for some cases and could be tuned further. */ if entropy[2] > 3.0 || entropy[1]-entropy[2] < 0.2 { return false } else { *num_literal_contexts = 13 *literal_context_map = kStaticContextMapComplexUTF8[:] return true } } } func decideOverLiteralContextModeling(input []byte, start_pos uint, length uint, mask uint, quality int, size_hint uint, num_literal_contexts *uint, literal_context_map *[]uint32) { if quality < minQualityForContextModeling || length < 64 { return } else if shouldUseComplexStaticContextMap(input, start_pos, length, mask, quality, size_hint, num_literal_contexts, literal_context_map) { } else /* Context map was already set, nothing else to do. */ { var end_pos uint = start_pos + length /* Gather bi-gram data of the UTF8 byte prefixes. To make the analysis of UTF8 data faster we only examine 64 byte long strides at every 4kB intervals. */ var bigram_prefix_histo = [9]uint32{0} for ; start_pos+64 <= end_pos; start_pos += 4096 { var lut = [4]int{0, 0, 1, 2} var stride_end_pos uint = start_pos + 64 var prev int = lut[input[start_pos&mask]>>6] * 3 var pos uint for pos = start_pos + 1; pos < stride_end_pos; pos++ { var literal byte = input[pos&mask] bigram_prefix_histo[prev+lut[literal>>6]]++ prev = lut[literal>>6] * 3 } } chooseContextMap(quality, bigram_prefix_histo[0:], num_literal_contexts, literal_context_map) } } func shouldCompress_encode(data []byte, mask uint, last_flush_pos uint64, bytes uint, num_literals uint, num_commands uint) bool { /* TODO: find more precise minimal block overhead. */ if bytes <= 2 { return false } if num_commands < (bytes>>8)+2 { if float64(num_literals) > 0.99*float64(bytes) { var literal_histo = [256]uint32{0} const kSampleRate uint32 = 13 const kMinEntropy float64 = 7.92 var bit_cost_threshold float64 = float64(bytes) * kMinEntropy / float64(kSampleRate) var t uint = uint((uint32(bytes) + kSampleRate - 1) / kSampleRate) var pos uint32 = uint32(last_flush_pos) var i uint for i = 0; i < t; i++ { literal_histo[data[pos&uint32(mask)]]++ pos += kSampleRate } if bitsEntropy(literal_histo[:], 256) > bit_cost_threshold { return false } } } return true } /* Chooses the literal context mode for a metablock */ func chooseContextMode(params *encoderParams, data []byte, pos uint, mask uint, length uint) int { /* We only do the computation for the option of something else than CONTEXT_UTF8 for the highest qualities */ if params.quality >= minQualityForHqBlockSplitting && !isMostlyUTF8(data, pos, mask, length, kMinUTF8Ratio) { return contextSigned } return contextUTF8 } func writeMetaBlockInternal(data []byte, mask uint, last_flush_pos uint64, bytes uint, is_last bool, literal_context_mode int, params *encoderParams, prev_byte byte, prev_byte2 byte, num_literals uint, num_commands uint, commands []command, saved_dist_cache []int, dist_cache []int, storage_ix *uint, storage []byte) { var wrapped_last_flush_pos uint32 = wrapPosition(last_flush_pos) var last_bytes uint16 var last_bytes_bits byte var literal_context_lut contextLUT = getContextLUT(literal_context_mode) var block_params encoderParams = *params if bytes == 0 { /* Write the ISLAST and ISEMPTY bits. */ writeBits(2, 3, storage_ix, storage) *storage_ix = (*storage_ix + 7) &^ 7 return } if !shouldCompress_encode(data, mask, last_flush_pos, bytes, num_literals, num_commands) { /* Restore the distance cache, as its last update by CreateBackwardReferences is now unused. */ copy(dist_cache, saved_dist_cache[:4]) storeUncompressedMetaBlock(is_last, data, uint(wrapped_last_flush_pos), mask, bytes, storage_ix, storage) return } assert(*storage_ix <= 14) last_bytes = uint16(storage[1])<<8 | uint16(storage[0]) last_bytes_bits = byte(*storage_ix) if params.quality <= maxQualityForStaticEntropyCodes { storeMetaBlockFast(data, uint(wrapped_last_flush_pos), bytes, mask, is_last, params, commands, num_commands, storage_ix, storage) } else if params.quality < minQualityForBlockSplit { storeMetaBlockTrivial(data, uint(wrapped_last_flush_pos), bytes, mask, is_last, params, commands, num_commands, storage_ix, storage) } else { var mb metaBlockSplit initMetaBlockSplit(&mb) if params.quality < minQualityForHqBlockSplitting { var num_literal_contexts uint = 1 var literal_context_map []uint32 = nil if !params.disable_literal_context_modeling { decideOverLiteralContextModeling(data, uint(wrapped_last_flush_pos), bytes, mask, params.quality, params.size_hint, &num_literal_contexts, &literal_context_map) } buildMetaBlockGreedy(data, uint(wrapped_last_flush_pos), mask, prev_byte, prev_byte2, literal_context_lut, num_literal_contexts, literal_context_map, commands, num_commands, &mb) } else { buildMetaBlock(data, uint(wrapped_last_flush_pos), mask, &block_params, prev_byte, prev_byte2, commands, num_commands, literal_context_mode, &mb) } if params.quality >= minQualityForOptimizeHistograms { /* The number of distance symbols effectively used for distance histograms. It might be less than distance alphabet size for "Large Window Brotli" (32-bit). */ var num_effective_dist_codes uint32 = block_params.dist.alphabet_size if num_effective_dist_codes > numHistogramDistanceSymbols { num_effective_dist_codes = numHistogramDistanceSymbols } optimizeHistograms(num_effective_dist_codes, &mb) } storeMetaBlock(data, uint(wrapped_last_flush_pos), bytes, mask, prev_byte, prev_byte2, is_last, &block_params, literal_context_mode, commands, num_commands, &mb, storage_ix, storage) destroyMetaBlockSplit(&mb) } if bytes+4 < *storage_ix>>3 { /* Restore the distance cache and last byte. */ copy(dist_cache, saved_dist_cache[:4]) storage[0] = byte(last_bytes) storage[1] = byte(last_bytes >> 8) *storage_ix = uint(last_bytes_bits) storeUncompressedMetaBlock(is_last, data, uint(wrapped_last_flush_pos), mask, bytes, storage_ix, storage) } } func chooseDistanceParams(params *encoderParams) { var distance_postfix_bits uint32 = 0 var num_direct_distance_codes uint32 = 0 if params.quality >= minQualityForNonzeroDistanceParams { var ndirect_msb uint32 if params.mode == modeFont { distance_postfix_bits = 1 num_direct_distance_codes = 12 } else { distance_postfix_bits = params.dist.distance_postfix_bits num_direct_distance_codes = params.dist.num_direct_distance_codes } ndirect_msb = (num_direct_distance_codes >> distance_postfix_bits) & 0x0F if distance_postfix_bits > maxNpostfix || num_direct_distance_codes > maxNdirect || ndirect_msb<>25)), (last_command.dist_prefix_&0x3FF == 0), &last_command.cmd_prefix_) } } /* Processes the accumulated input data and sets |s.available_out_| to the length of the new output meta-block, or to zero if no new output meta-block has been created (in this case the processed input data is buffered internally). If |s.available_out_| is positive, |s.next_out_| points to the start of the output data. If |is_last| or |force_flush| is true, an output meta-block is always created. However, until |is_last| is true encoder may retain up to 7 bits of the last byte of output. To force encoder to dump the remaining bits use WriteMetadata() to append an empty meta-data block. Returns false if the size of the input data is larger than input_block_size(). */ func encodeData(s *Writer, is_last bool, force_flush bool) bool { var delta uint64 = unprocessedInputSize(s) var bytes uint32 = uint32(delta) var wrapped_last_processed_pos uint32 = wrapPosition(s.last_processed_pos_) var data []byte var mask uint32 var literal_context_mode int data = s.ringbuffer_.buffer_ mask = s.ringbuffer_.mask_ /* Adding more blocks after "last" block is forbidden. */ if s.is_last_block_emitted_ { return false } if is_last { s.is_last_block_emitted_ = true } if delta > uint64(inputBlockSize(s)) { return false } if s.params.quality == fastTwoPassCompressionQuality && s.command_buf_ == nil { s.command_buf_ = make([]uint32, kCompressFragmentTwoPassBlockSize) s.literal_buf_ = make([]byte, kCompressFragmentTwoPassBlockSize) } if s.params.quality == fastOnePassCompressionQuality || s.params.quality == fastTwoPassCompressionQuality { var storage []byte var storage_ix uint = uint(s.last_bytes_bits_) var table_size uint var table []int if delta == 0 && !is_last { /* We have no new input data and we don't have to finish the stream, so nothing to do. */ s.available_out_ = 0 return true } storage = getBrotliStorage(s, uint(2*bytes+503)) storage[0] = byte(s.last_bytes_) storage[1] = byte(s.last_bytes_ >> 8) table = getHashTable(s, s.params.quality, uint(bytes), &table_size) if s.params.quality == fastOnePassCompressionQuality { compressFragmentFast(data[wrapped_last_processed_pos&mask:], uint(bytes), is_last, table, table_size, s.cmd_depths_[:], s.cmd_bits_[:], &s.cmd_code_numbits_, s.cmd_code_[:], &storage_ix, storage) } else { compressFragmentTwoPass(data[wrapped_last_processed_pos&mask:], uint(bytes), is_last, s.command_buf_, s.literal_buf_, table, table_size, &storage_ix, storage) } s.last_bytes_ = uint16(storage[storage_ix>>3]) s.last_bytes_bits_ = byte(storage_ix & 7) updateLastProcessedPos(s) s.next_out_ = storage[0:] s.available_out_ = storage_ix >> 3 return true } { /* Theoretical max number of commands is 1 per 2 bytes. */ var newsize uint = uint(uint32(s.num_commands_) + bytes/2 + 1) if newsize > s.cmd_alloc_size_ { var new_commands []command /* Reserve a bit more memory to allow merging with a next block without reallocation: that would impact speed. */ newsize += uint((bytes / 4) + 16) s.cmd_alloc_size_ = newsize new_commands = make([]command, newsize) if s.commands_ != nil { copy(new_commands, s.commands_[:s.num_commands_]) s.commands_ = nil } s.commands_ = new_commands } } initOrStitchToPreviousBlock(&s.hasher_, data, uint(mask), &s.params, uint(wrapped_last_processed_pos), uint(bytes), is_last) literal_context_mode = chooseContextMode(&s.params, data, uint(wrapPosition(s.last_flush_pos_)), uint(mask), uint(s.input_pos_-s.last_flush_pos_)) if s.num_commands_ != 0 && s.last_insert_len_ == 0 { extendLastCommand(s, &bytes, &wrapped_last_processed_pos) } if s.params.quality == zopflificationQuality { assert(s.params.hasher.type_ == 10) createZopfliBackwardReferences(uint(bytes), uint(wrapped_last_processed_pos), data, uint(mask), &s.params, s.hasher_.(*h10), s.dist_cache_[:], &s.last_insert_len_, s.commands_[s.num_commands_:], &s.num_commands_, &s.num_literals_) } else if s.params.quality == hqZopflificationQuality { assert(s.params.hasher.type_ == 10) createHqZopfliBackwardReferences(uint(bytes), uint(wrapped_last_processed_pos), data, uint(mask), &s.params, s.hasher_, s.dist_cache_[:], &s.last_insert_len_, s.commands_[s.num_commands_:], &s.num_commands_, &s.num_literals_) } else { createBackwardReferences(uint(bytes), uint(wrapped_last_processed_pos), data, uint(mask), &s.params, s.hasher_, s.dist_cache_[:], &s.last_insert_len_, s.commands_[s.num_commands_:], &s.num_commands_, &s.num_literals_) } { var max_length uint = maxMetablockSize(&s.params) var max_literals uint = max_length / 8 var max_commands uint = max_length / 8 var processed_bytes uint = uint(s.input_pos_ - s.last_flush_pos_) var next_input_fits_metablock bool = (processed_bytes+inputBlockSize(s) <= max_length) var should_flush bool = (s.params.quality < minQualityForBlockSplit && s.num_literals_+s.num_commands_ >= maxNumDelayedSymbols) /* If maximal possible additional block doesn't fit metablock, flush now. */ /* TODO: Postpone decision until next block arrives? */ /* If block splitting is not used, then flush as soon as there is some amount of commands / literals produced. */ if !is_last && !force_flush && !should_flush && next_input_fits_metablock && s.num_literals_ < max_literals && s.num_commands_ < max_commands { /* Merge with next input block. Everything will happen later. */ if updateLastProcessedPos(s) { hasherReset(s.hasher_) } s.available_out_ = 0 return true } } /* Create the last insert-only command. */ if s.last_insert_len_ > 0 { initInsertCommand(&s.commands_[s.num_commands_], s.last_insert_len_) s.num_commands_++ s.num_literals_ += s.last_insert_len_ s.last_insert_len_ = 0 } if !is_last && s.input_pos_ == s.last_flush_pos_ { /* We have no new input data and we don't have to finish the stream, so nothing to do. */ s.available_out_ = 0 return true } assert(s.input_pos_ >= s.last_flush_pos_) assert(s.input_pos_ > s.last_flush_pos_ || is_last) assert(s.input_pos_-s.last_flush_pos_ <= 1<<24) { var metablock_size uint32 = uint32(s.input_pos_ - s.last_flush_pos_) var storage []byte = getBrotliStorage(s, uint(2*metablock_size+503)) var storage_ix uint = uint(s.last_bytes_bits_) storage[0] = byte(s.last_bytes_) storage[1] = byte(s.last_bytes_ >> 8) writeMetaBlockInternal(data, uint(mask), s.last_flush_pos_, uint(metablock_size), is_last, literal_context_mode, &s.params, s.prev_byte_, s.prev_byte2_, s.num_literals_, s.num_commands_, s.commands_, s.saved_dist_cache_[:], s.dist_cache_[:], &storage_ix, storage) s.last_bytes_ = uint16(storage[storage_ix>>3]) s.last_bytes_bits_ = byte(storage_ix & 7) s.last_flush_pos_ = s.input_pos_ if updateLastProcessedPos(s) { hasherReset(s.hasher_) } if s.last_flush_pos_ > 0 { s.prev_byte_ = data[(uint32(s.last_flush_pos_)-1)&mask] } if s.last_flush_pos_ > 1 { s.prev_byte2_ = data[uint32(s.last_flush_pos_-2)&mask] } s.num_commands_ = 0 s.num_literals_ = 0 /* Save the state of the distance cache in case we need to restore it for emitting an uncompressed block. */ copy(s.saved_dist_cache_[:], s.dist_cache_[:]) s.next_out_ = storage[0:] s.available_out_ = storage_ix >> 3 return true } } /* Dumps remaining output bits and metadata header to |header|. Returns number of produced bytes. REQUIRED: |header| should be 8-byte aligned and at least 16 bytes long. REQUIRED: |block_size| <= (1 << 24). */ func writeMetadataHeader(s *Writer, block_size uint, header []byte) uint { var storage_ix uint storage_ix = uint(s.last_bytes_bits_) header[0] = byte(s.last_bytes_) header[1] = byte(s.last_bytes_ >> 8) s.last_bytes_ = 0 s.last_bytes_bits_ = 0 writeBits(1, 0, &storage_ix, header) writeBits(2, 3, &storage_ix, header) writeBits(1, 0, &storage_ix, header) if block_size == 0 { writeBits(2, 0, &storage_ix, header) } else { var nbits uint32 if block_size == 1 { nbits = 0 } else { nbits = log2FloorNonZero(uint(uint32(block_size)-1)) + 1 } var nbytes uint32 = (nbits + 7) / 8 writeBits(2, uint64(nbytes), &storage_ix, header) writeBits(uint(8*nbytes), uint64(block_size)-1, &storage_ix, header) } return (storage_ix + 7) >> 3 } func injectBytePaddingBlock(s *Writer) { var seal uint32 = uint32(s.last_bytes_) var seal_bits uint = uint(s.last_bytes_bits_) var destination []byte s.last_bytes_ = 0 s.last_bytes_bits_ = 0 /* is_last = 0, data_nibbles = 11, reserved = 0, meta_nibbles = 00 */ seal |= 0x6 << seal_bits seal_bits += 6 /* If we have already created storage, then append to it. Storage is valid until next block is being compressed. */ if s.next_out_ != nil { destination = s.next_out_[s.available_out_:] } else { destination = s.tiny_buf_.u8[:] s.next_out_ = destination } destination[0] = byte(seal) if seal_bits > 8 { destination[1] = byte(seal >> 8) } if seal_bits > 16 { destination[2] = byte(seal >> 16) } s.available_out_ += (seal_bits + 7) >> 3 } func checkFlushComplete(s *Writer) { if s.stream_state_ == streamFlushRequested && s.available_out_ == 0 { s.stream_state_ = streamProcessing s.next_out_ = nil } } func encoderCompressStreamFast(s *Writer, op int, available_in *uint, next_in *[]byte) bool { var block_size_limit uint = uint(1) << s.params.lgwin var buf_size uint = brotli_min_size_t(kCompressFragmentTwoPassBlockSize, brotli_min_size_t(*available_in, block_size_limit)) var tmp_command_buf []uint32 = nil var command_buf []uint32 = nil var tmp_literal_buf []byte = nil var literal_buf []byte = nil if s.params.quality != fastOnePassCompressionQuality && s.params.quality != fastTwoPassCompressionQuality { return false } if s.params.quality == fastTwoPassCompressionQuality { if s.command_buf_ == nil && buf_size == kCompressFragmentTwoPassBlockSize { s.command_buf_ = make([]uint32, kCompressFragmentTwoPassBlockSize) s.literal_buf_ = make([]byte, kCompressFragmentTwoPassBlockSize) } if s.command_buf_ != nil { command_buf = s.command_buf_ literal_buf = s.literal_buf_ } else { tmp_command_buf = make([]uint32, buf_size) tmp_literal_buf = make([]byte, buf_size) command_buf = tmp_command_buf literal_buf = tmp_literal_buf } } for { if s.stream_state_ == streamFlushRequested && s.last_bytes_bits_ != 0 { injectBytePaddingBlock(s) continue } /* Compress block only when internal output buffer is empty, stream is not finished, there is no pending flush request, and there is either additional input or pending operation. */ if s.available_out_ == 0 && s.stream_state_ == streamProcessing && (*available_in != 0 || op != int(operationProcess)) { var block_size uint = brotli_min_size_t(block_size_limit, *available_in) var is_last bool = (*available_in == block_size) && (op == int(operationFinish)) var force_flush bool = (*available_in == block_size) && (op == int(operationFlush)) var max_out_size uint = 2*block_size + 503 var storage []byte = nil var storage_ix uint = uint(s.last_bytes_bits_) var table_size uint var table []int if force_flush && block_size == 0 { s.stream_state_ = streamFlushRequested continue } storage = getBrotliStorage(s, max_out_size) storage[0] = byte(s.last_bytes_) storage[1] = byte(s.last_bytes_ >> 8) table = getHashTable(s, s.params.quality, block_size, &table_size) if s.params.quality == fastOnePassCompressionQuality { compressFragmentFast(*next_in, block_size, is_last, table, table_size, s.cmd_depths_[:], s.cmd_bits_[:], &s.cmd_code_numbits_, s.cmd_code_[:], &storage_ix, storage) } else { compressFragmentTwoPass(*next_in, block_size, is_last, command_buf, literal_buf, table, table_size, &storage_ix, storage) } *next_in = (*next_in)[block_size:] *available_in -= block_size var out_bytes uint = storage_ix >> 3 s.next_out_ = storage s.available_out_ = out_bytes s.last_bytes_ = uint16(storage[storage_ix>>3]) s.last_bytes_bits_ = byte(storage_ix & 7) if force_flush { s.stream_state_ = streamFlushRequested } if is_last { s.stream_state_ = streamFinished } continue } break } tmp_command_buf = nil tmp_literal_buf = nil checkFlushComplete(s) return true } func processMetadata(s *Writer, available_in *uint, next_in *[]byte) bool { if *available_in > 1<<24 { return false } /* Switch to metadata block workflow, if required. */ if s.stream_state_ == streamProcessing { s.remaining_metadata_bytes_ = uint32(*available_in) s.stream_state_ = streamMetadataHead } if s.stream_state_ != streamMetadataHead && s.stream_state_ != streamMetadataBody { return false } for { if s.stream_state_ == streamFlushRequested && s.last_bytes_bits_ != 0 { injectBytePaddingBlock(s) continue } if s.available_out_ != 0 { break } if s.input_pos_ != s.last_flush_pos_ { var result bool = encodeData(s, false, true) if !result { return false } continue } if s.stream_state_ == streamMetadataHead { s.next_out_ = s.tiny_buf_.u8[:] s.available_out_ = writeMetadataHeader(s, uint(s.remaining_metadata_bytes_), s.next_out_) s.stream_state_ = streamMetadataBody continue } else { /* Exit workflow only when there is no more input and no more output. Otherwise client may continue producing empty metadata blocks. */ if s.remaining_metadata_bytes_ == 0 { s.remaining_metadata_bytes_ = math.MaxUint32 s.stream_state_ = streamProcessing break } /* This guarantees progress in "TakeOutput" workflow. */ var c uint32 = brotli_min_uint32_t(s.remaining_metadata_bytes_, 16) s.next_out_ = s.tiny_buf_.u8[:] copy(s.next_out_, (*next_in)[:c]) *next_in = (*next_in)[c:] *available_in -= uint(c) s.remaining_metadata_bytes_ -= c s.available_out_ = uint(c) continue } } return true } func updateSizeHint(s *Writer, available_in uint) { if s.params.size_hint == 0 { var delta uint64 = unprocessedInputSize(s) var tail uint64 = uint64(available_in) var limit uint32 = 1 << 30 var total uint32 if (delta >= uint64(limit)) || (tail >= uint64(limit)) || ((delta + tail) >= uint64(limit)) { total = limit } else { total = uint32(delta + tail) } s.params.size_hint = uint(total) } } func encoderCompressStream(s *Writer, op int, available_in *uint, next_in *[]byte) bool { if !ensureInitialized(s) { return false } /* Unfinished metadata block; check requirements. */ if s.remaining_metadata_bytes_ != math.MaxUint32 { if uint32(*available_in) != s.remaining_metadata_bytes_ { return false } if op != int(operationEmitMetadata) { return false } } if op == int(operationEmitMetadata) { updateSizeHint(s, 0) /* First data metablock might be emitted here. */ return processMetadata(s, available_in, next_in) } if s.stream_state_ == streamMetadataHead || s.stream_state_ == streamMetadataBody { return false } if s.stream_state_ != streamProcessing && *available_in != 0 { return false } if s.params.quality == fastOnePassCompressionQuality || s.params.quality == fastTwoPassCompressionQuality { return encoderCompressStreamFast(s, op, available_in, next_in) } for { var remaining_block_size uint = remainingInputBlockSize(s) if remaining_block_size != 0 && *available_in != 0 { var copy_input_size uint = brotli_min_size_t(remaining_block_size, *available_in) copyInputToRingBuffer(s, copy_input_size, *next_in) *next_in = (*next_in)[copy_input_size:] *available_in -= copy_input_size continue } if s.stream_state_ == streamFlushRequested && s.last_bytes_bits_ != 0 { injectBytePaddingBlock(s) continue } /* Compress data only when internal output buffer is empty, stream is not finished and there is no pending flush request. */ if s.available_out_ == 0 && s.stream_state_ == streamProcessing { if remaining_block_size == 0 || op != int(operationProcess) { var is_last bool = ((*available_in == 0) && op == int(operationFinish)) var force_flush bool = ((*available_in == 0) && op == int(operationFlush)) var result bool updateSizeHint(s, *available_in) result = encodeData(s, is_last, force_flush) if !result { return false } if force_flush { s.stream_state_ = streamFlushRequested } if is_last { s.stream_state_ = streamFinished } continue } } break } checkFlushComplete(s) return true } func encoderHasMoreOutput(s *Writer) bool { return s.available_out_ != 0 } func encoderTakeOutput(s *Writer) []byte { if s.available_out_ == 0 { return nil } result := s.next_out_[:s.available_out_] s.total_out_ += s.available_out_ s.available_out_ = 0 checkFlushComplete(s) return result }