package brotli /* Copyright 2013 Google Inc. All Rights Reserved. Distributed under MIT license. See file LICENSE for detail or copy at https://opensource.org/licenses/MIT */ /* Implementation of Brotli compressor. */ /* Copyright 2013 Google Inc. All Rights Reserved. Distributed under MIT license. See file LICENSE for detail or copy at https://opensource.org/licenses/MIT */ /* Sliding window over the input data. */ /* A RingBuffer(window_bits, tail_bits) contains `1 << window_bits' bytes of data in a circular manner: writing a byte writes it to: `position() % (1 << window_bits)'. For convenience, the RingBuffer array contains another copy of the first `1 << tail_bits' bytes: buffer_[i] == buffer_[i + (1 << window_bits)], if i < (1 << tail_bits), and another copy of the last two bytes: buffer_[-1] == buffer_[(1 << window_bits) - 1] and buffer_[-2] == buffer_[(1 << window_bits) - 2]. */ type RingBuffer struct { size_ uint32 mask_ uint32 tail_size_ uint32 total_size_ uint32 cur_size_ uint32 pos_ uint32 data_ []byte buffer_ []byte } func RingBufferInit(rb *RingBuffer) { rb.cur_size_ = 0 rb.pos_ = 0 rb.data_ = nil rb.buffer_ = nil } func RingBufferSetup(params *BrotliEncoderParams, rb *RingBuffer) { var window_bits int = ComputeRbBits(params) var tail_bits int = params.lgblock *(*uint32)(&rb.size_) = 1 << uint(window_bits) *(*uint32)(&rb.mask_) = (1 << uint(window_bits)) - 1 *(*uint32)(&rb.tail_size_) = 1 << uint(tail_bits) *(*uint32)(&rb.total_size_) = rb.size_ + rb.tail_size_ } func RingBufferFree(rb *RingBuffer) { rb.data_ = nil } /* Allocates or re-allocates data_ to the given length + plus some slack region before and after. Fills the slack regions with zeros. */ var RingBufferInitBuffer_kSlackForEightByteHashingEverywhere uint = 7 func RingBufferInitBuffer(buflen uint32, rb *RingBuffer) { var new_data []byte = make([]byte, (2 + uint(buflen) + RingBufferInitBuffer_kSlackForEightByteHashingEverywhere)) var i uint if rb.data_ != nil { copy(new_data, rb.data_[:2+rb.cur_size_+uint32(RingBufferInitBuffer_kSlackForEightByteHashingEverywhere)]) rb.data_ = nil } rb.data_ = new_data rb.cur_size_ = buflen rb.buffer_ = rb.data_[2:] rb.data_[1] = 0 rb.data_[0] = rb.data_[1] for i = 0; i < RingBufferInitBuffer_kSlackForEightByteHashingEverywhere; i++ { rb.buffer_[rb.cur_size_+uint32(i)] = 0 } } func RingBufferWriteTail(bytes []byte, n uint, rb *RingBuffer) { var masked_pos uint = uint(rb.pos_ & rb.mask_) if uint32(masked_pos) < rb.tail_size_ { /* Just fill the tail buffer with the beginning data. */ var p uint = uint(rb.size_ + uint32(masked_pos)) copy(rb.buffer_[p:], bytes[:brotli_min_size_t(n, uint(rb.tail_size_-uint32(masked_pos)))]) } } /* Push bytes into the ring buffer. */ func RingBufferWrite(bytes []byte, n uint, rb *RingBuffer) { if rb.pos_ == 0 && uint32(n) < rb.tail_size_ { /* Special case for the first write: to process the first block, we don't need to allocate the whole ring-buffer and we don't need the tail either. However, we do this memory usage optimization only if the first write is less than the tail size, which is also the input block size, otherwise it is likely that other blocks will follow and we will need to reallocate to the full size anyway. */ rb.pos_ = uint32(n) RingBufferInitBuffer(rb.pos_, rb) copy(rb.buffer_, bytes[:n]) return } if rb.cur_size_ < rb.total_size_ { /* Lazily allocate the full buffer. */ RingBufferInitBuffer(rb.total_size_, rb) /* Initialize the last two bytes to zero, so that we don't have to worry later when we copy the last two bytes to the first two positions. */ rb.buffer_[rb.size_-2] = 0 rb.buffer_[rb.size_-1] = 0 } { var masked_pos uint = uint(rb.pos_ & rb.mask_) /* The length of the writes is limited so that we do not need to worry about a write */ RingBufferWriteTail(bytes, n, rb) if uint32(masked_pos+n) <= rb.size_ { /* A single write fits. */ copy(rb.buffer_[masked_pos:], bytes[:n]) } else { /* Split into two writes. Copy into the end of the buffer, including the tail buffer. */ copy(rb.buffer_[masked_pos:], bytes[:brotli_min_size_t(n, uint(rb.total_size_-uint32(masked_pos)))]) /* Copy into the beginning of the buffer */ copy(rb.buffer_, bytes[rb.size_-uint32(masked_pos):][:uint32(n)-(rb.size_-uint32(masked_pos))]) } } { var not_first_lap bool = rb.pos_&(1<<31) != 0 var rb_pos_mask uint32 = (1 << 31) - 1 rb.data_[0] = rb.buffer_[rb.size_-2] rb.data_[1] = rb.buffer_[rb.size_-1] rb.pos_ = (rb.pos_ & rb_pos_mask) + uint32(uint32(n)&rb_pos_mask) if not_first_lap { /* Wrap, but preserve not-a-first-lap feature. */ rb.pos_ |= 1 << 31 } } }