package brotli import "io" /* Copyright 2016 Google Inc. All Rights Reserved. Distributed under MIT license. See file LICENSE for detail or copy at https://opensource.org/licenses/MIT */ /* Constants and formulas that affect speed-ratio trade-offs and thus define quality levels. */ /* Copyright 2013 Google Inc. All Rights Reserved. Distributed under MIT license. See file LICENSE for detail or copy at https://opensource.org/licenses/MIT */ /** * @file * API for Brotli compression. */ /** Minimal value for ::BROTLI_PARAM_LGWIN parameter. */ const BROTLI_MIN_WINDOW_BITS = 10 /** * Maximal value for ::BROTLI_PARAM_LGWIN parameter. * * @note equal to @c BROTLI_MAX_DISTANCE_BITS constant. */ const BROTLI_MAX_WINDOW_BITS = 24 /** * Maximal value for ::BROTLI_PARAM_LGWIN parameter * in "Large Window Brotli" (32-bit). */ const BROTLI_LARGE_MAX_WINDOW_BITS = 30 /** Minimal value for ::BROTLI_PARAM_LGBLOCK parameter. */ const BROTLI_MIN_INPUT_BLOCK_BITS = 16 /** Maximal value for ::BROTLI_PARAM_LGBLOCK parameter. */ const BROTLI_MAX_INPUT_BLOCK_BITS = 24 /** Minimal value for ::BROTLI_PARAM_QUALITY parameter. */ const BROTLI_MIN_QUALITY = 0 /** Maximal value for ::BROTLI_PARAM_QUALITY parameter. */ const BROTLI_MAX_QUALITY = 11 /** Options for ::BROTLI_PARAM_MODE parameter. */ const ( BROTLI_MODE_GENERIC = 0 BROTLI_MODE_TEXT = 1 BROTLI_MODE_FONT = 2 ) /** Default value for ::BROTLI_PARAM_QUALITY parameter. */ const BROTLI_DEFAULT_QUALITY = 11 /** Default value for ::BROTLI_PARAM_LGWIN parameter. */ const BROTLI_DEFAULT_WINDOW = 22 /** Default value for ::BROTLI_PARAM_MODE parameter. */ const BROTLI_DEFAULT_MODE = BROTLI_MODE_GENERIC /** Operations that can be performed by streaming encoder. */ const ( BROTLI_OPERATION_PROCESS = 0 BROTLI_OPERATION_FLUSH = 1 BROTLI_OPERATION_FINISH = 2 BROTLI_OPERATION_EMIT_METADATA = 3 ) const ( BROTLI_STREAM_PROCESSING = 0 BROTLI_STREAM_FLUSH_REQUESTED = 1 BROTLI_STREAM_FINISHED = 2 BROTLI_STREAM_METADATA_HEAD = 3 BROTLI_STREAM_METADATA_BODY = 4 ) type Writer struct { dst io.Writer params BrotliEncoderParams hasher_ HasherHandle input_pos_ uint64 ringbuffer_ RingBuffer cmd_alloc_size_ uint commands_ []Command num_commands_ uint num_literals_ uint last_insert_len_ uint last_flush_pos_ uint64 last_processed_pos_ uint64 dist_cache_ [BROTLI_NUM_DISTANCE_SHORT_CODES]int saved_dist_cache_ [4]int last_bytes_ uint16 last_bytes_bits_ byte prev_byte_ byte prev_byte2_ byte storage_size_ uint storage_ []byte small_table_ [1 << 10]int large_table_ []int large_table_size_ uint cmd_depths_ [128]byte cmd_bits_ [128]uint16 cmd_code_ [512]byte cmd_code_numbits_ uint command_buf_ []uint32 literal_buf_ []byte next_out_ []byte available_out_ uint total_out_ uint tiny_buf_ struct { u64 [2]uint64 u8 [16]byte } remaining_metadata_bytes_ uint32 stream_state_ int is_last_block_emitted_ bool is_initialized_ bool } func InputBlockSize(s *Writer) uint { return uint(1) << uint(s.params.lgblock) } func UnprocessedInputSize(s *Writer) uint64 { return s.input_pos_ - s.last_processed_pos_ } func RemainingInputBlockSize(s *Writer) uint { var delta uint64 = UnprocessedInputSize(s) var block_size uint = InputBlockSize(s) if delta >= uint64(block_size) { return 0 } return block_size - uint(delta) } /* Wraps 64-bit input position to 32-bit ring-buffer position preserving "not-a-first-lap" feature. */ func WrapPosition(position uint64) uint32 { var result uint32 = uint32(position) var gb uint64 = position >> 30 if gb > 2 { /* Wrap every 2GiB; The first 3GB are continuous. */ result = result&((1<<30)-1) | (uint32((gb-1)&1)+1)<<30 } return result } func GetBrotliStorage(s *Writer, size uint) []byte { if s.storage_size_ < size { s.storage_ = nil s.storage_ = make([]byte, size) s.storage_size_ = size } return s.storage_ } func HashTableSize(max_table_size uint, input_size uint) uint { var htsize uint = 256 for htsize < max_table_size && htsize < input_size { htsize <<= 1 } return htsize } func GetHashTable(s *Writer, quality int, input_size uint, table_size *uint) []int { var max_table_size uint = MaxHashTableSize(quality) var htsize uint = HashTableSize(max_table_size, input_size) /* Use smaller hash table when input.size() is smaller, since we fill the table, incurring O(hash table size) overhead for compression, and if the input is short, we won't need that many hash table entries anyway. */ var table []int assert(max_table_size >= 256) if quality == FAST_ONE_PASS_COMPRESSION_QUALITY { /* Only odd shifts are supported by fast-one-pass. */ if htsize&0xAAAAA == 0 { htsize <<= 1 } } if htsize <= uint(len(s.small_table_)) { table = s.small_table_[:] } else { if htsize > s.large_table_size_ { s.large_table_size_ = htsize s.large_table_ = nil s.large_table_ = make([]int, htsize) } table = s.large_table_ } *table_size = htsize for i := 0; i < int(htsize); i++ { table[i] = 0 } return table } func EncodeWindowBits(lgwin int, large_window bool, last_bytes *uint16, last_bytes_bits *byte) { if large_window { *last_bytes = uint16((lgwin&0x3F)<<8 | 0x11) *last_bytes_bits = 14 } else { if lgwin == 16 { *last_bytes = 0 *last_bytes_bits = 1 } else if lgwin == 17 { *last_bytes = 1 *last_bytes_bits = 7 } else if lgwin > 17 { *last_bytes = uint16((lgwin-17)<<1 | 0x01) *last_bytes_bits = 4 } else { *last_bytes = uint16((lgwin-8)<<4 | 0x01) *last_bytes_bits = 7 } } } /* Initializes the command and distance prefix codes for the first block. */ var InitCommandPrefixCodes_kDefaultCommandDepths = [128]byte{ 0, 4, 4, 5, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 0, 0, 0, 4, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 10, 10, 10, 10, 10, 10, 0, 4, 4, 5, 5, 5, 6, 6, 7, 8, 8, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 7, 7, 7, 8, 10, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, } var InitCommandPrefixCodes_kDefaultCommandBits = [128]uint16{ 0, 0, 8, 9, 3, 35, 7, 71, 39, 103, 23, 47, 175, 111, 239, 31, 0, 0, 0, 4, 12, 2, 10, 6, 13, 29, 11, 43, 27, 59, 87, 55, 15, 79, 319, 831, 191, 703, 447, 959, 0, 14, 1, 25, 5, 21, 19, 51, 119, 159, 95, 223, 479, 991, 63, 575, 127, 639, 383, 895, 255, 767, 511, 1023, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 27, 59, 7, 39, 23, 55, 30, 1, 17, 9, 25, 5, 0, 8, 4, 12, 2, 10, 6, 21, 13, 29, 3, 19, 11, 15, 47, 31, 95, 63, 127, 255, 767, 2815, 1791, 3839, 511, 2559, 1535, 3583, 1023, 3071, 2047, 4095, } var InitCommandPrefixCodes_kDefaultCommandCode = []byte{ 0xff, 0x77, 0xd5, 0xbf, 0xe7, 0xde, 0xea, 0x9e, 0x51, 0x5d, 0xde, 0xc6, 0x70, 0x57, 0xbc, 0x58, 0x58, 0x58, 0xd8, 0xd8, 0x58, 0xd5, 0xcb, 0x8c, 0xea, 0xe0, 0xc3, 0x87, 0x1f, 0x83, 0xc1, 0x60, 0x1c, 0x67, 0xb2, 0xaa, 0x06, 0x83, 0xc1, 0x60, 0x30, 0x18, 0xcc, 0xa1, 0xce, 0x88, 0x54, 0x94, 0x46, 0xe1, 0xb0, 0xd0, 0x4e, 0xb2, 0xf7, 0x04, 0x00, } var InitCommandPrefixCodes_kDefaultCommandCodeNumBits uint = 448 func InitCommandPrefixCodes(cmd_depths []byte, cmd_bits []uint16, cmd_code []byte, cmd_code_numbits *uint) { copy(cmd_depths, InitCommandPrefixCodes_kDefaultCommandDepths[:]) copy(cmd_bits, InitCommandPrefixCodes_kDefaultCommandBits[:]) /* Initialize the pre-compressed form of the command and distance prefix codes. */ copy(cmd_code, InitCommandPrefixCodes_kDefaultCommandCode) *cmd_code_numbits = InitCommandPrefixCodes_kDefaultCommandCodeNumBits } /* Decide about the context map based on the ability of the prediction ability of the previous byte UTF8-prefix on the next byte. The prediction ability is calculated as Shannon entropy. Here we need Shannon entropy instead of 'BitsEntropy' since the prefix will be encoded with the remaining 6 bits of the following byte, and BitsEntropy will assume that symbol to be stored alone using Huffman coding. */ var ChooseContextMap_kStaticContextMapContinuation = [64]uint32{ 1, 1, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, } var ChooseContextMap_kStaticContextMapSimpleUTF8 = [64]uint32{ 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, } func ChooseContextMap(quality int, bigram_histo []uint32, num_literal_contexts *uint, literal_context_map *[]uint32) { var monogram_histo = [3]uint32{0} var two_prefix_histo = [6]uint32{0} var total uint var i uint var dummy uint var entropy [4]float64 for i = 0; i < 9; i++ { monogram_histo[i%3] += bigram_histo[i] two_prefix_histo[i%6] += bigram_histo[i] } entropy[1] = shannonEntropy(monogram_histo[:], 3, &dummy) entropy[2] = (shannonEntropy(two_prefix_histo[:], 3, &dummy) + shannonEntropy(two_prefix_histo[3:], 3, &dummy)) entropy[3] = 0 for i = 0; i < 3; i++ { entropy[3] += shannonEntropy(bigram_histo[3*i:], 3, &dummy) } total = uint(monogram_histo[0] + monogram_histo[1] + monogram_histo[2]) assert(total != 0) entropy[0] = 1.0 / float64(total) entropy[1] *= entropy[0] entropy[2] *= entropy[0] entropy[3] *= entropy[0] if quality < MIN_QUALITY_FOR_HQ_CONTEXT_MODELING { /* 3 context models is a bit slower, don't use it at lower qualities. */ entropy[3] = entropy[1] * 10 } /* If expected savings by symbol are less than 0.2 bits, skip the context modeling -- in exchange for faster decoding speed. */ if entropy[1]-entropy[2] < 0.2 && entropy[1]-entropy[3] < 0.2 { *num_literal_contexts = 1 } else if entropy[2]-entropy[3] < 0.02 { *num_literal_contexts = 2 *literal_context_map = ChooseContextMap_kStaticContextMapSimpleUTF8[:] } else { *num_literal_contexts = 3 *literal_context_map = ChooseContextMap_kStaticContextMapContinuation[:] } } /* Decide if we want to use a more complex static context map containing 13 context values, based on the entropy reduction of histograms over the first 5 bits of literals. */ var ShouldUseComplexStaticContextMap_kStaticContextMapComplexUTF8 = [64]uint32{ 11, 11, 12, 12, 0, 0, 0, 0, 1, 1, 9, 9, 2, 2, 2, 2, 1, 1, 1, 1, 8, 3, 3, 3, 1, 1, 1, 1, 2, 2, 2, 2, 8, 4, 4, 4, 8, 7, 4, 4, 8, 0, 0, 0, 3, 3, 3, 3, 5, 5, 10, 5, 5, 5, 10, 5, 6, 6, 6, 6, 6, 6, 6, 6, } func ShouldUseComplexStaticContextMap(input []byte, start_pos uint, length uint, mask uint, quality int, size_hint uint, num_literal_contexts *uint, literal_context_map *[]uint32) bool { /* Try the more complex static context map only for long data. */ if size_hint < 1<<20 { return false } else { var end_pos uint = start_pos + length var combined_histo = [32]uint32{0} var context_histo = [13][32]uint32{[32]uint32{0}} var total uint32 = 0 var entropy [3]float64 var dummy uint var i uint var utf8_lut ContextLut = BROTLI_CONTEXT_LUT(CONTEXT_UTF8) /* To make entropy calculations faster and to fit on the stack, we collect histograms over the 5 most significant bits of literals. One histogram without context and 13 additional histograms for each context value. */ for ; start_pos+64 <= end_pos; start_pos += 4096 { var stride_end_pos uint = start_pos + 64 var prev2 byte = input[start_pos&mask] var prev1 byte = input[(start_pos+1)&mask] var pos uint /* To make the analysis of the data faster we only examine 64 byte long strides at every 4kB intervals. */ for pos = start_pos + 2; pos < stride_end_pos; pos++ { var literal byte = input[pos&mask] var context byte = byte(ShouldUseComplexStaticContextMap_kStaticContextMapComplexUTF8[BROTLI_CONTEXT(prev1, prev2, utf8_lut)]) total++ combined_histo[literal>>3]++ context_histo[context][literal>>3]++ prev2 = prev1 prev1 = literal } } entropy[1] = shannonEntropy(combined_histo[:], 32, &dummy) entropy[2] = 0 for i = 0; i < 13; i++ { entropy[2] += shannonEntropy(context_histo[i][0:], 32, &dummy) } entropy[0] = 1.0 / float64(total) entropy[1] *= entropy[0] entropy[2] *= entropy[0] /* The triggering heuristics below were tuned by compressing the individual files of the silesia corpus. If we skip this kind of context modeling for not very well compressible input (i.e. entropy using context modeling is 60% of maximal entropy) or if expected savings by symbol are less than 0.2 bits, then in every case when it triggers, the final compression ratio is improved. Note however that this heuristics might be too strict for some cases and could be tuned further. */ if entropy[2] > 3.0 || entropy[1]-entropy[2] < 0.2 { return false } else { *num_literal_contexts = 13 *literal_context_map = ShouldUseComplexStaticContextMap_kStaticContextMapComplexUTF8[:] return true } } } func DecideOverLiteralContextModeling(input []byte, start_pos uint, length uint, mask uint, quality int, size_hint uint, num_literal_contexts *uint, literal_context_map *[]uint32) { if quality < MIN_QUALITY_FOR_CONTEXT_MODELING || length < 64 { return } else if ShouldUseComplexStaticContextMap(input, start_pos, length, mask, quality, size_hint, num_literal_contexts, literal_context_map) { } else /* Context map was already set, nothing else to do. */ { var end_pos uint = start_pos + length /* Gather bi-gram data of the UTF8 byte prefixes. To make the analysis of UTF8 data faster we only examine 64 byte long strides at every 4kB intervals. */ var bigram_prefix_histo = [9]uint32{0} for ; start_pos+64 <= end_pos; start_pos += 4096 { var lut = [4]int{0, 0, 1, 2} var stride_end_pos uint = start_pos + 64 var prev int = lut[input[start_pos&mask]>>6] * 3 var pos uint for pos = start_pos + 1; pos < stride_end_pos; pos++ { var literal byte = input[pos&mask] bigram_prefix_histo[prev+lut[literal>>6]]++ prev = lut[literal>>6] * 3 } } ChooseContextMap(quality, bigram_prefix_histo[0:], num_literal_contexts, literal_context_map) } } func ShouldCompress_encode(data []byte, mask uint, last_flush_pos uint64, bytes uint, num_literals uint, num_commands uint) bool { /* TODO: find more precise minimal block overhead. */ if bytes <= 2 { return false } if num_commands < (bytes>>8)+2 { if float64(num_literals) > 0.99*float64(bytes) { var literal_histo = [256]uint32{0} var kSampleRate uint32 = 13 var kMinEntropy float64 = 7.92 var bit_cost_threshold float64 = float64(bytes) * kMinEntropy / float64(kSampleRate) var t uint = uint((uint32(bytes) + kSampleRate - 1) / kSampleRate) var pos uint32 = uint32(last_flush_pos) var i uint for i = 0; i < t; i++ { literal_histo[data[pos&uint32(mask)]]++ pos += kSampleRate } if bitsEntropy(literal_histo[:], 256) > bit_cost_threshold { return false } } } return true } /* Chooses the literal context mode for a metablock */ func ChooseContextMode(params *BrotliEncoderParams, data []byte, pos uint, mask uint, length uint) int { /* We only do the computation for the option of something else than CONTEXT_UTF8 for the highest qualities */ if params.quality >= MIN_QUALITY_FOR_HQ_BLOCK_SPLITTING && !BrotliIsMostlyUTF8(data, pos, mask, length, kMinUTF8Ratio) { return CONTEXT_SIGNED } return CONTEXT_UTF8 } func WriteMetaBlockInternal(data []byte, mask uint, last_flush_pos uint64, bytes uint, is_last bool, literal_context_mode int, params *BrotliEncoderParams, prev_byte byte, prev_byte2 byte, num_literals uint, num_commands uint, commands []Command, saved_dist_cache []int, dist_cache []int, storage_ix *uint, storage []byte) { var wrapped_last_flush_pos uint32 = WrapPosition(last_flush_pos) var last_bytes uint16 var last_bytes_bits byte var literal_context_lut ContextLut = BROTLI_CONTEXT_LUT(literal_context_mode) var block_params BrotliEncoderParams = *params if bytes == 0 { /* Write the ISLAST and ISEMPTY bits. */ BrotliWriteBits(2, 3, storage_ix, storage) *storage_ix = (*storage_ix + 7) &^ 7 return } if !ShouldCompress_encode(data, mask, last_flush_pos, bytes, num_literals, num_commands) { /* Restore the distance cache, as its last update by CreateBackwardReferences is now unused. */ copy(dist_cache, saved_dist_cache[:4]) BrotliStoreUncompressedMetaBlock(is_last, data, uint(wrapped_last_flush_pos), mask, bytes, storage_ix, storage) return } assert(*storage_ix <= 14) last_bytes = uint16(storage[1]<<8 | storage[0]) last_bytes_bits = byte(*storage_ix) if params.quality <= MAX_QUALITY_FOR_STATIC_ENTROPY_CODES { BrotliStoreMetaBlockFast(data, uint(wrapped_last_flush_pos), bytes, mask, is_last, params, commands, num_commands, storage_ix, storage) } else if params.quality < MIN_QUALITY_FOR_BLOCK_SPLIT { BrotliStoreMetaBlockTrivial(data, uint(wrapped_last_flush_pos), bytes, mask, is_last, params, commands, num_commands, storage_ix, storage) } else { var mb MetaBlockSplit InitMetaBlockSplit(&mb) if params.quality < MIN_QUALITY_FOR_HQ_BLOCK_SPLITTING { var num_literal_contexts uint = 1 var literal_context_map []uint32 = nil if !params.disable_literal_context_modeling { DecideOverLiteralContextModeling(data, uint(wrapped_last_flush_pos), bytes, mask, params.quality, params.size_hint, &num_literal_contexts, &literal_context_map) } BrotliBuildMetaBlockGreedy(data, uint(wrapped_last_flush_pos), mask, prev_byte, prev_byte2, literal_context_lut, num_literal_contexts, literal_context_map, commands, num_commands, &mb) } else { BrotliBuildMetaBlock(data, uint(wrapped_last_flush_pos), mask, &block_params, prev_byte, prev_byte2, commands, num_commands, literal_context_mode, &mb) } if params.quality >= MIN_QUALITY_FOR_OPTIMIZE_HISTOGRAMS { /* The number of distance symbols effectively used for distance histograms. It might be less than distance alphabet size for "Large Window Brotli" (32-bit). */ var num_effective_dist_codes uint32 = block_params.dist.alphabet_size if num_effective_dist_codes > BROTLI_NUM_HISTOGRAM_DISTANCE_SYMBOLS { num_effective_dist_codes = BROTLI_NUM_HISTOGRAM_DISTANCE_SYMBOLS } BrotliOptimizeHistograms(num_effective_dist_codes, &mb) } BrotliStoreMetaBlock(data, uint(wrapped_last_flush_pos), bytes, mask, prev_byte, prev_byte2, is_last, &block_params, literal_context_mode, commands, num_commands, &mb, storage_ix, storage) DestroyMetaBlockSplit(&mb) } if bytes+4 < *storage_ix>>3 { /* Restore the distance cache and last byte. */ copy(dist_cache, saved_dist_cache[:4]) storage[0] = byte(last_bytes) storage[1] = byte(last_bytes >> 8) *storage_ix = uint(last_bytes_bits) BrotliStoreUncompressedMetaBlock(is_last, data, uint(wrapped_last_flush_pos), mask, bytes, storage_ix, storage) } } func ChooseDistanceParams(params *BrotliEncoderParams) { var distance_postfix_bits uint32 = 0 var num_direct_distance_codes uint32 = 0 if params.quality >= MIN_QUALITY_FOR_NONZERO_DISTANCE_PARAMS { var ndirect_msb uint32 if params.mode == BROTLI_MODE_FONT { distance_postfix_bits = 1 num_direct_distance_codes = 12 } else { distance_postfix_bits = params.dist.distance_postfix_bits num_direct_distance_codes = params.dist.num_direct_distance_codes } ndirect_msb = (num_direct_distance_codes >> distance_postfix_bits) & 0x0F if distance_postfix_bits > BROTLI_MAX_NPOSTFIX || num_direct_distance_codes > BROTLI_MAX_NDIRECT || ndirect_msb<>25)), (last_command.dist_prefix_&0x3FF == 0), &last_command.cmd_prefix_) } } /* Processes the accumulated input data and sets |*out_size| to the length of the new output meta-block, or to zero if no new output meta-block has been created (in this case the processed input data is buffered internally). If |*out_size| is positive, |*output| points to the start of the output data. If |is_last| or |force_flush| is true, an output meta-block is always created. However, until |is_last| is true encoder may retain up to 7 bits of the last byte of output. To force encoder to dump the remaining bits use WriteMetadata() to append an empty meta-data block. Returns false if the size of the input data is larger than input_block_size(). */ func EncodeData(s *Writer, is_last bool, force_flush bool, out_size *uint, output *[]byte) bool { var delta uint64 = UnprocessedInputSize(s) var bytes uint32 = uint32(delta) var wrapped_last_processed_pos uint32 = WrapPosition(s.last_processed_pos_) var data []byte var mask uint32 var literal_context_mode int data = s.ringbuffer_.buffer_ mask = s.ringbuffer_.mask_ /* Adding more blocks after "last" block is forbidden. */ if s.is_last_block_emitted_ { return false } if is_last { s.is_last_block_emitted_ = true } if delta > uint64(InputBlockSize(s)) { return false } if s.params.quality == FAST_TWO_PASS_COMPRESSION_QUALITY && s.command_buf_ == nil { s.command_buf_ = make([]uint32, kCompressFragmentTwoPassBlockSize) s.literal_buf_ = make([]byte, kCompressFragmentTwoPassBlockSize) } if s.params.quality == FAST_ONE_PASS_COMPRESSION_QUALITY || s.params.quality == FAST_TWO_PASS_COMPRESSION_QUALITY { var storage []byte var storage_ix uint = uint(s.last_bytes_bits_) var table_size uint var table []int if delta == 0 && !is_last { /* We have no new input data and we don't have to finish the stream, so nothing to do. */ *out_size = 0 return true } storage = GetBrotliStorage(s, uint(2*bytes+503)) storage[0] = byte(s.last_bytes_) storage[1] = byte(s.last_bytes_ >> 8) table = GetHashTable(s, s.params.quality, uint(bytes), &table_size) if s.params.quality == FAST_ONE_PASS_COMPRESSION_QUALITY { BrotliCompressFragmentFast(data[wrapped_last_processed_pos&mask:], uint(bytes), is_last, table, table_size, s.cmd_depths_[:], s.cmd_bits_[:], &s.cmd_code_numbits_, s.cmd_code_[:], &storage_ix, storage) } else { BrotliCompressFragmentTwoPass(data[wrapped_last_processed_pos&mask:], uint(bytes), is_last, s.command_buf_, s.literal_buf_, table, table_size, &storage_ix, storage) } s.last_bytes_ = uint16(storage[storage_ix>>3]) s.last_bytes_bits_ = byte(storage_ix & 7) UpdateLastProcessedPos(s) *output = storage[0:] *out_size = storage_ix >> 3 return true } { /* Theoretical max number of commands is 1 per 2 bytes. */ var newsize uint = uint(uint32(s.num_commands_) + bytes/2 + 1) if newsize > s.cmd_alloc_size_ { var new_commands []Command /* Reserve a bit more memory to allow merging with a next block without reallocation: that would impact speed. */ newsize += uint((bytes / 4) + 16) s.cmd_alloc_size_ = newsize new_commands = make([]Command, newsize) if s.commands_ != nil { copy(new_commands, s.commands_[:s.num_commands_]) s.commands_ = nil } s.commands_ = new_commands } } InitOrStitchToPreviousBlock(&s.hasher_, data, uint(mask), &s.params, uint(wrapped_last_processed_pos), uint(bytes), is_last) literal_context_mode = ChooseContextMode(&s.params, data, uint(WrapPosition(s.last_flush_pos_)), uint(mask), uint(s.input_pos_-s.last_flush_pos_)) if s.num_commands_ != 0 && s.last_insert_len_ == 0 { ExtendLastCommand(s, &bytes, &wrapped_last_processed_pos) } if s.params.quality == ZOPFLIFICATION_QUALITY { assert(s.params.hasher.type_ == 10) createZopfliBackwardReferences(uint(bytes), uint(wrapped_last_processed_pos), data, uint(mask), &s.params, s.hasher_.(*H10), s.dist_cache_[:], &s.last_insert_len_, s.commands_[s.num_commands_:], &s.num_commands_, &s.num_literals_) } else if s.params.quality == HQ_ZOPFLIFICATION_QUALITY { assert(s.params.hasher.type_ == 10) createHqZopfliBackwardReferences(uint(bytes), uint(wrapped_last_processed_pos), data, uint(mask), &s.params, s.hasher_, s.dist_cache_[:], &s.last_insert_len_, s.commands_[s.num_commands_:], &s.num_commands_, &s.num_literals_) } else { createBackwardReferences(uint(bytes), uint(wrapped_last_processed_pos), data, uint(mask), &s.params, s.hasher_, s.dist_cache_[:], &s.last_insert_len_, s.commands_[s.num_commands_:], &s.num_commands_, &s.num_literals_) } { var max_length uint = MaxMetablockSize(&s.params) var max_literals uint = max_length / 8 var max_commands uint = max_length / 8 var processed_bytes uint = uint(s.input_pos_ - s.last_flush_pos_) var next_input_fits_metablock bool = (processed_bytes+InputBlockSize(s) <= max_length) var should_flush bool = (s.params.quality < MIN_QUALITY_FOR_BLOCK_SPLIT && s.num_literals_+s.num_commands_ >= MAX_NUM_DELAYED_SYMBOLS) /* If maximal possible additional block doesn't fit metablock, flush now. */ /* TODO: Postpone decision until next block arrives? */ /* If block splitting is not used, then flush as soon as there is some amount of commands / literals produced. */ if !is_last && !force_flush && !should_flush && next_input_fits_metablock && s.num_literals_ < max_literals && s.num_commands_ < max_commands { /* Merge with next input block. Everything will happen later. */ if UpdateLastProcessedPos(s) { HasherReset(s.hasher_) } *out_size = 0 return true } } /* Create the last insert-only command. */ if s.last_insert_len_ > 0 { InitInsertCommand(&s.commands_[s.num_commands_], s.last_insert_len_) s.num_commands_++ s.num_literals_ += s.last_insert_len_ s.last_insert_len_ = 0 } if !is_last && s.input_pos_ == s.last_flush_pos_ { /* We have no new input data and we don't have to finish the stream, so nothing to do. */ *out_size = 0 return true } assert(s.input_pos_ >= s.last_flush_pos_) assert(s.input_pos_ > s.last_flush_pos_ || is_last) assert(s.input_pos_-s.last_flush_pos_ <= 1<<24) { var metablock_size uint32 = uint32(s.input_pos_ - s.last_flush_pos_) var storage []byte = GetBrotliStorage(s, uint(2*metablock_size+503)) var storage_ix uint = uint(s.last_bytes_bits_) storage[0] = byte(s.last_bytes_) storage[1] = byte(s.last_bytes_ >> 8) WriteMetaBlockInternal(data, uint(mask), s.last_flush_pos_, uint(metablock_size), is_last, literal_context_mode, &s.params, s.prev_byte_, s.prev_byte2_, s.num_literals_, s.num_commands_, s.commands_, s.saved_dist_cache_[:], s.dist_cache_[:], &storage_ix, storage) s.last_bytes_ = uint16(storage[storage_ix>>3]) s.last_bytes_bits_ = byte(storage_ix & 7) s.last_flush_pos_ = s.input_pos_ if UpdateLastProcessedPos(s) { HasherReset(s.hasher_) } if s.last_flush_pos_ > 0 { s.prev_byte_ = data[(uint32(s.last_flush_pos_)-1)&mask] } if s.last_flush_pos_ > 1 { s.prev_byte2_ = data[uint32(s.last_flush_pos_-2)&mask] } s.num_commands_ = 0 s.num_literals_ = 0 /* Save the state of the distance cache in case we need to restore it for emitting an uncompressed block. */ copy(s.saved_dist_cache_[:], s.dist_cache_[:]) *output = storage[0:] *out_size = storage_ix >> 3 return true } } /* Dumps remaining output bits and metadata header to |header|. Returns number of produced bytes. REQUIRED: |header| should be 8-byte aligned and at least 16 bytes long. REQUIRED: |block_size| <= (1 << 24). */ func WriteMetadataHeader(s *Writer, block_size uint, header []byte) uint { var storage_ix uint storage_ix = uint(s.last_bytes_bits_) header[0] = byte(s.last_bytes_) header[1] = byte(s.last_bytes_ >> 8) s.last_bytes_ = 0 s.last_bytes_bits_ = 0 BrotliWriteBits(1, 0, &storage_ix, header) BrotliWriteBits(2, 3, &storage_ix, header) BrotliWriteBits(1, 0, &storage_ix, header) if block_size == 0 { BrotliWriteBits(2, 0, &storage_ix, header) } else { var nbits uint32 if block_size == 1 { nbits = 0 } else { nbits = Log2FloorNonZero(uint(uint32(block_size)-1)) + 1 } var nbytes uint32 = (nbits + 7) / 8 BrotliWriteBits(2, uint64(nbytes), &storage_ix, header) BrotliWriteBits(uint(8*nbytes), uint64(block_size)-1, &storage_ix, header) } return (storage_ix + 7) >> 3 } func BrotliCompressBufferQuality10(lgwin int, input_size uint, input_buffer []byte, encoded_size *uint, encoded_buffer []byte) bool { var mask uint = BROTLI_SIZE_MAX >> 1 var dist_cache = [4]int{4, 11, 15, 16} var saved_dist_cache = [4]int{4, 11, 15, 16} var ok bool = true var max_out_size uint = *encoded_size var total_out_size uint = 0 var last_bytes uint16 var last_bytes_bits byte var hasher HasherHandle = nil var hasher_eff_size uint = brotli_min_size_t(input_size, BROTLI_MAX_BACKWARD_LIMIT(uint(lgwin))+BROTLI_WINDOW_GAP) var params BrotliEncoderParams var lgmetablock int = brotli_min_int(24, lgwin+1) var max_block_size uint var max_metablock_size uint = uint(1) << uint(lgmetablock) var max_literals_per_metablock uint = max_metablock_size / 8 var max_commands_per_metablock uint = max_metablock_size / 8 var metablock_start uint = 0 var prev_byte byte = 0 var prev_byte2 byte = 0 BrotliEncoderInitParams(¶ms) params.quality = 10 params.lgwin = uint(lgwin) if lgwin > BROTLI_MAX_WINDOW_BITS { params.large_window = true } SanitizeParams(¶ms) params.lgblock = ComputeLgBlock(¶ms) ChooseDistanceParams(¶ms) max_block_size = uint(1) << uint(params.lgblock) assert(input_size <= mask+1) EncodeWindowBits(lgwin, params.large_window, &last_bytes, &last_bytes_bits) InitOrStitchToPreviousBlock(&hasher, input_buffer, mask, ¶ms, 0, hasher_eff_size, true) for ok && metablock_start < input_size { var metablock_end uint = brotli_min_size_t(input_size, metablock_start+max_metablock_size) var expected_num_commands uint = (metablock_end-metablock_start)/12 + 16 var commands []Command = nil var num_commands uint = 0 var last_insert_len uint = 0 var num_literals uint = 0 var metablock_size uint = 0 var cmd_alloc_size uint = 0 var is_last bool var storage []byte var storage_ix uint var literal_context_mode int = ChooseContextMode(¶ms, input_buffer, metablock_start, mask, metablock_end-metablock_start) var block_start uint for block_start = metablock_start; block_start < metablock_end; { var block_size uint = brotli_min_size_t(metablock_end-block_start, max_block_size) var nodes []zopfliNode = make([]zopfliNode, (block_size + 1)) var path_size uint var new_cmd_alloc_size uint initZopfliNodes(nodes, block_size+1) hasher.StitchToPreviousBlock(block_size, block_start, input_buffer, mask) path_size = zopfliComputeShortestPath(block_size, block_start, input_buffer, mask, ¶ms, dist_cache[:], hasher.(*H10), nodes) /* We allocate a command buffer in the first iteration of this loop that will be likely big enough for the whole metablock, so that for most inputs we will not have to reallocate in later iterations. We do the allocation here and not before the loop, because if the input is small, this will be allocated after the Zopfli cost model is freed, so this will not increase peak memory usage. TODO: If the first allocation is too small, increase command buffer size exponentially. */ new_cmd_alloc_size = brotli_max_size_t(expected_num_commands, num_commands+path_size+1) if cmd_alloc_size != new_cmd_alloc_size { var new_commands []Command = make([]Command, new_cmd_alloc_size) cmd_alloc_size = new_cmd_alloc_size if commands != nil { copy(new_commands, commands[:num_commands]) commands = nil } commands = new_commands } zopfliCreateCommands(block_size, block_start, nodes[0:], dist_cache[:], &last_insert_len, ¶ms, commands[num_commands:], &num_literals) num_commands += path_size block_start += block_size metablock_size += block_size nodes = nil if num_literals > max_literals_per_metablock || num_commands > max_commands_per_metablock { break } } if last_insert_len > 0 { InitInsertCommand(&commands[num_commands], last_insert_len) num_commands++ num_literals += last_insert_len } is_last = (metablock_start+metablock_size == input_size) storage = nil storage_ix = uint(last_bytes_bits) if metablock_size == 0 { /* Write the ISLAST and ISEMPTY bits. */ storage = make([]byte, 16) storage[0] = byte(last_bytes) storage[1] = byte(last_bytes >> 8) BrotliWriteBits(2, 3, &storage_ix, storage) storage_ix = (storage_ix + 7) &^ 7 } else if !ShouldCompress_encode(input_buffer, mask, uint64(metablock_start), metablock_size, num_literals, num_commands) { /* Restore the distance cache, as its last update by CreateBackwardReferences is now unused. */ copy(dist_cache[:], saved_dist_cache[:4]) storage = make([]byte, (metablock_size + 16)) storage[0] = byte(last_bytes) storage[1] = byte(last_bytes >> 8) BrotliStoreUncompressedMetaBlock(is_last, input_buffer, metablock_start, mask, metablock_size, &storage_ix, storage) } else { var mb MetaBlockSplit var block_params BrotliEncoderParams = params InitMetaBlockSplit(&mb) BrotliBuildMetaBlock(input_buffer, metablock_start, mask, &block_params, prev_byte, prev_byte2, commands, num_commands, literal_context_mode, &mb) { /* The number of distance symbols effectively used for distance histograms. It might be less than distance alphabet size for "Large Window Brotli" (32-bit). */ var num_effective_dist_codes uint32 = block_params.dist.alphabet_size if num_effective_dist_codes > BROTLI_NUM_HISTOGRAM_DISTANCE_SYMBOLS { num_effective_dist_codes = BROTLI_NUM_HISTOGRAM_DISTANCE_SYMBOLS } BrotliOptimizeHistograms(num_effective_dist_codes, &mb) } storage = make([]byte, (2*metablock_size + 503)) storage[0] = byte(last_bytes) storage[1] = byte(last_bytes >> 8) BrotliStoreMetaBlock(input_buffer, metablock_start, metablock_size, mask, prev_byte, prev_byte2, is_last, &block_params, literal_context_mode, commands, num_commands, &mb, &storage_ix, storage) if metablock_size+4 < storage_ix>>3 { /* Restore the distance cache and last byte. */ copy(dist_cache[:], saved_dist_cache[:4]) storage[0] = byte(last_bytes) storage[1] = byte(last_bytes >> 8) storage_ix = uint(last_bytes_bits) BrotliStoreUncompressedMetaBlock(is_last, input_buffer, metablock_start, mask, metablock_size, &storage_ix, storage) } DestroyMetaBlockSplit(&mb) } last_bytes = uint16(storage[storage_ix>>3]) last_bytes_bits = byte(storage_ix & 7) metablock_start += metablock_size if metablock_start < input_size { prev_byte = input_buffer[metablock_start-1] prev_byte2 = input_buffer[metablock_start-2] } /* Save the state of the distance cache in case we need to restore it for emitting an uncompressed block. */ copy(saved_dist_cache[:], dist_cache[:4]) { var out_size uint = storage_ix >> 3 total_out_size += out_size if total_out_size <= max_out_size { copy(encoded_buffer, storage[:out_size]) encoded_buffer = encoded_buffer[out_size:] } else { ok = false } } storage = nil commands = nil } *encoded_size = total_out_size DestroyHasher(&hasher) return ok } func BrotliEncoderMaxCompressedSize(input_size uint) uint { var num_large_blocks uint = input_size >> 14 var overhead uint = 2 + (4 * num_large_blocks) + 3 + 1 /* [window bits / empty metadata] + N * [uncompressed] + [last empty] */ var result uint = input_size + overhead if input_size == 0 { return 2 } if result < input_size { return 0 } else { return result } } /* Wraps data to uncompressed brotli stream with minimal window size. |output| should point at region with at least BrotliEncoderMaxCompressedSize addressable bytes. Returns the length of stream. */ func MakeUncompressedStream(input []byte, input_size uint, output []byte) uint { var size uint = input_size var result uint = 0 var offset uint = 0 if input_size == 0 { output[0] = 6 return 1 } output[result] = 0x21 result++ /* window bits = 10, is_last = false */ output[result] = 0x03 result++ /* empty metadata, padding */ for size > 0 { var nibbles uint32 = 0 var chunk_size uint32 var bits uint32 if size > 1<<24 { chunk_size = 1 << 24 } else { chunk_size = uint32(size) } if chunk_size > 1<<16 { if chunk_size > 1<<20 { nibbles = 2 } else { nibbles = 1 } } bits = nibbles<<1 | (chunk_size-1)<<3 | 1<<(19+4*nibbles) output[result] = byte(bits) result++ output[result] = byte(bits >> 8) result++ output[result] = byte(bits >> 16) result++ if nibbles == 2 { output[result] = byte(bits >> 24) result++ } copy(output[result:], input[offset:][:chunk_size]) result += uint(chunk_size) offset += uint(chunk_size) size -= uint(chunk_size) } output[result] = 3 result++ return result } func InjectBytePaddingBlock(s *Writer) { var seal uint32 = uint32(s.last_bytes_) var seal_bits uint = uint(s.last_bytes_bits_) var destination []byte s.last_bytes_ = 0 s.last_bytes_bits_ = 0 /* is_last = 0, data_nibbles = 11, reserved = 0, meta_nibbles = 00 */ seal |= 0x6 << seal_bits seal_bits += 6 /* If we have already created storage, then append to it. Storage is valid until next block is being compressed. */ if s.next_out_ != nil { destination = s.next_out_[s.available_out_:] } else { destination = s.tiny_buf_.u8[:] s.next_out_ = destination } destination[0] = byte(seal) if seal_bits > 8 { destination[1] = byte(seal >> 8) } if seal_bits > 16 { destination[2] = byte(seal >> 16) } s.available_out_ += (seal_bits + 7) >> 3 } func CheckFlushComplete(s *Writer) { if s.stream_state_ == BROTLI_STREAM_FLUSH_REQUESTED && s.available_out_ == 0 { s.stream_state_ = BROTLI_STREAM_PROCESSING s.next_out_ = nil } } func BrotliEncoderCompressStreamFast(s *Writer, op int, available_in *uint, next_in *[]byte) bool { var block_size_limit uint = uint(1) << s.params.lgwin var buf_size uint = brotli_min_size_t(kCompressFragmentTwoPassBlockSize, brotli_min_size_t(*available_in, block_size_limit)) var tmp_command_buf []uint32 = nil var command_buf []uint32 = nil var tmp_literal_buf []byte = nil var literal_buf []byte = nil if s.params.quality != FAST_ONE_PASS_COMPRESSION_QUALITY && s.params.quality != FAST_TWO_PASS_COMPRESSION_QUALITY { return false } if s.params.quality == FAST_TWO_PASS_COMPRESSION_QUALITY { if s.command_buf_ == nil && buf_size == kCompressFragmentTwoPassBlockSize { s.command_buf_ = make([]uint32, kCompressFragmentTwoPassBlockSize) s.literal_buf_ = make([]byte, kCompressFragmentTwoPassBlockSize) } if s.command_buf_ != nil { command_buf = s.command_buf_ literal_buf = s.literal_buf_ } else { tmp_command_buf = make([]uint32, buf_size) tmp_literal_buf = make([]byte, buf_size) command_buf = tmp_command_buf literal_buf = tmp_literal_buf } } for { if s.stream_state_ == BROTLI_STREAM_FLUSH_REQUESTED && s.last_bytes_bits_ != 0 { InjectBytePaddingBlock(s) continue } /* Compress block only when internal output buffer is empty, stream is not finished, there is no pending flush request, and there is either additional input or pending operation. */ if s.available_out_ == 0 && s.stream_state_ == BROTLI_STREAM_PROCESSING && (*available_in != 0 || op != int(BROTLI_OPERATION_PROCESS)) { var block_size uint = brotli_min_size_t(block_size_limit, *available_in) var is_last bool = (*available_in == block_size) && (op == int(BROTLI_OPERATION_FINISH)) var force_flush bool = (*available_in == block_size) && (op == int(BROTLI_OPERATION_FLUSH)) var max_out_size uint = 2*block_size + 503 var storage []byte = nil var storage_ix uint = uint(s.last_bytes_bits_) var table_size uint var table []int if force_flush && block_size == 0 { s.stream_state_ = BROTLI_STREAM_FLUSH_REQUESTED continue } storage = GetBrotliStorage(s, max_out_size) storage[0] = byte(s.last_bytes_) storage[1] = byte(s.last_bytes_ >> 8) table = GetHashTable(s, s.params.quality, block_size, &table_size) if s.params.quality == FAST_ONE_PASS_COMPRESSION_QUALITY { BrotliCompressFragmentFast(*next_in, block_size, is_last, table, table_size, s.cmd_depths_[:], s.cmd_bits_[:], &s.cmd_code_numbits_, s.cmd_code_[:], &storage_ix, storage) } else { BrotliCompressFragmentTwoPass(*next_in, block_size, is_last, command_buf, literal_buf, table, table_size, &storage_ix, storage) } *next_in = (*next_in)[block_size:] *available_in -= block_size var out_bytes uint = storage_ix >> 3 s.next_out_ = storage s.available_out_ = out_bytes s.last_bytes_ = uint16(storage[storage_ix>>3]) s.last_bytes_bits_ = byte(storage_ix & 7) if force_flush { s.stream_state_ = BROTLI_STREAM_FLUSH_REQUESTED } if is_last { s.stream_state_ = BROTLI_STREAM_FINISHED } continue } break } tmp_command_buf = nil tmp_literal_buf = nil CheckFlushComplete(s) return true } func ProcessMetadata(s *Writer, available_in *uint, next_in *[]byte) bool { if *available_in > 1<<24 { return false } /* Switch to metadata block workflow, if required. */ if s.stream_state_ == BROTLI_STREAM_PROCESSING { s.remaining_metadata_bytes_ = uint32(*available_in) s.stream_state_ = BROTLI_STREAM_METADATA_HEAD } if s.stream_state_ != BROTLI_STREAM_METADATA_HEAD && s.stream_state_ != BROTLI_STREAM_METADATA_BODY { return false } for { if s.stream_state_ == BROTLI_STREAM_FLUSH_REQUESTED && s.last_bytes_bits_ != 0 { InjectBytePaddingBlock(s) continue } if s.available_out_ != 0 { break } if s.input_pos_ != s.last_flush_pos_ { var result bool = EncodeData(s, false, true, &s.available_out_, &s.next_out_) if !result { return false } continue } if s.stream_state_ == BROTLI_STREAM_METADATA_HEAD { s.next_out_ = s.tiny_buf_.u8[:] s.available_out_ = WriteMetadataHeader(s, uint(s.remaining_metadata_bytes_), s.next_out_) s.stream_state_ = BROTLI_STREAM_METADATA_BODY continue } else { /* Exit workflow only when there is no more input and no more output. Otherwise client may continue producing empty metadata blocks. */ if s.remaining_metadata_bytes_ == 0 { s.remaining_metadata_bytes_ = BROTLI_UINT32_MAX s.stream_state_ = BROTLI_STREAM_PROCESSING break } /* This guarantees progress in "TakeOutput" workflow. */ var c uint32 = brotli_min_uint32_t(s.remaining_metadata_bytes_, 16) s.next_out_ = s.tiny_buf_.u8[:] copy(s.next_out_, (*next_in)[:c]) *next_in = (*next_in)[c:] *available_in -= uint(c) s.remaining_metadata_bytes_ -= c s.available_out_ = uint(c) continue } } return true } func UpdateSizeHint(s *Writer, available_in uint) { if s.params.size_hint == 0 { var delta uint64 = UnprocessedInputSize(s) var tail uint64 = uint64(available_in) var limit uint32 = 1 << 30 var total uint32 if (delta >= uint64(limit)) || (tail >= uint64(limit)) || ((delta + tail) >= uint64(limit)) { total = limit } else { total = uint32(delta + tail) } s.params.size_hint = uint(total) } } func BrotliEncoderCompressStream(s *Writer, op int, available_in *uint, next_in *[]byte) bool { if !EnsureInitialized(s) { return false } /* Unfinished metadata block; check requirements. */ if s.remaining_metadata_bytes_ != BROTLI_UINT32_MAX { if uint32(*available_in) != s.remaining_metadata_bytes_ { return false } if op != int(BROTLI_OPERATION_EMIT_METADATA) { return false } } if op == int(BROTLI_OPERATION_EMIT_METADATA) { UpdateSizeHint(s, 0) /* First data metablock might be emitted here. */ return ProcessMetadata(s, available_in, next_in) } if s.stream_state_ == BROTLI_STREAM_METADATA_HEAD || s.stream_state_ == BROTLI_STREAM_METADATA_BODY { return false } if s.stream_state_ != BROTLI_STREAM_PROCESSING && *available_in != 0 { return false } if s.params.quality == FAST_ONE_PASS_COMPRESSION_QUALITY || s.params.quality == FAST_TWO_PASS_COMPRESSION_QUALITY { return BrotliEncoderCompressStreamFast(s, op, available_in, next_in) } for { var remaining_block_size uint = RemainingInputBlockSize(s) if remaining_block_size != 0 && *available_in != 0 { var copy_input_size uint = brotli_min_size_t(remaining_block_size, *available_in) CopyInputToRingBuffer(s, copy_input_size, *next_in) *next_in = (*next_in)[copy_input_size:] *available_in -= copy_input_size continue } if s.stream_state_ == BROTLI_STREAM_FLUSH_REQUESTED && s.last_bytes_bits_ != 0 { InjectBytePaddingBlock(s) continue } /* Compress data only when internal output buffer is empty, stream is not finished and there is no pending flush request. */ if s.available_out_ == 0 && s.stream_state_ == BROTLI_STREAM_PROCESSING { if remaining_block_size == 0 || op != int(BROTLI_OPERATION_PROCESS) { var is_last bool = ((*available_in == 0) && op == int(BROTLI_OPERATION_FINISH)) var force_flush bool = ((*available_in == 0) && op == int(BROTLI_OPERATION_FLUSH)) var result bool UpdateSizeHint(s, *available_in) result = EncodeData(s, is_last, force_flush, &s.available_out_, &s.next_out_) if !result { return false } if force_flush { s.stream_state_ = BROTLI_STREAM_FLUSH_REQUESTED } if is_last { s.stream_state_ = BROTLI_STREAM_FINISHED } continue } } break } CheckFlushComplete(s) return true } func BrotliEncoderIsFinished(s *Writer) bool { return s.stream_state_ == BROTLI_STREAM_FINISHED && !BrotliEncoderHasMoreOutput(s) } func BrotliEncoderHasMoreOutput(s *Writer) bool { return s.available_out_ != 0 } func BrotliEncoderTakeOutput(s *Writer) []byte { if s.available_out_ == 0 { return nil } result := s.next_out_[:s.available_out_] s.total_out_ += s.available_out_ s.available_out_ = 0 CheckFlushComplete(s) return result } func BrotliEncoderVersion() uint32 { return BROTLI_VERSION }