av/codec/codecutil/lex.go

226 lines
6.4 KiB
Go

/*
NAME
lex.go
AUTHOR
Trek Hopton <trek@ausocean.org>
LICENSE
This file is Copyright (C) 2019 the Australian Ocean Lab (AusOcean)
It is free software: you can redistribute it and/or modify them
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License in gpl.txt.
If not, see [GNU licenses](http://www.gnu.org/licenses).
*/
package codecutil
import (
"errors"
"fmt"
"io"
"math"
"time"
)
// ByteLexer is used to lex bytes using a buffer size which is configured upon construction.
type ByteLexer struct {
bufSize int
}
// NewByteLexer returns a pointer to a ByteLexer with the given buffer size.
func NewByteLexer(s int) (*ByteLexer, error) {
if s <= 0 {
return nil, fmt.Errorf("invalid buffer size: %v", s)
}
return &ByteLexer{bufSize: s}, nil
}
// zeroTicks can be used to create an instant ticker.
var zeroTicks chan time.Time
func init() {
zeroTicks = make(chan time.Time)
close(zeroTicks)
}
// Lex reads l.bufSize bytes from src and writes them to dst every d seconds.
func (l *ByteLexer) Lex(dst io.Writer, src io.Reader, d time.Duration) error {
if d < 0 {
return fmt.Errorf("invalid delay: %v", d)
}
var ticker *time.Ticker
if d == 0 {
ticker = &time.Ticker{C: zeroTicks}
} else {
ticker = time.NewTicker(d)
defer ticker.Stop()
}
buf := make([]byte, l.bufSize)
for {
<-ticker.C
off, err := src.Read(buf)
// The only error that will stop the lexer is an EOF.
if err == io.EOF {
return err
} else if err != nil {
continue
}
_, err = dst.Write(buf[:off])
if err != nil {
return err
}
}
}
// Noop reads media "frames" from src, queues and then writes to dst at intervals,
// maintaining a steady number of frames stored in the queue (channel). This ensures frames
// are outputted at a consistent rate; useful if reads occur from src in blocks (a
// side effect if src is connected to an input that receives packets containing
// multiple frames at intervals e.g. MPEG-TS over HTTP).
// Noop assumes that writing to the input connected to src is blocked until the
// entire previous write is read, i.e. src is expected to be connected to
// a pipe-like structure.
func Noop(dst io.Writer, src io.Reader, d time.Duration) error {
// Controller tuning constants.
const (
target = 500 // Target channel size to maintain.
coef = 0.05 // Proportional controller coefficient.
minDelay = 1 // Minimum delay between writes (micro s).
maxDelay = 1000000 // Maximum delay between writes (micro s).
defaultDelay = 40 * time.Millisecond // Default delay between writes, equivalent to ~25fps.
bufferTimeout = 1 * time.Minute // Buffer read/write timeout.
)
// Ring buffer tuning.
const (
ringCap = 1000 // Ring buffer capacity.
ringElemSize = 250000 // Ring buffer element size i.e. max h264 frame size.
)
if d < 0 {
return fmt.Errorf("invalid delay: %v", d)
}
if d == 0 {
d = defaultDelay
}
var (
delay = time.NewTicker(d) // Ticker based on delay between frames.
errCh = make(chan error) // Used by the output routine to signal errors to the main loop.
rb = newRingBuffer(ringElemSize, ringCap, bufferTimeout) // Use a ring buffer to reduce allocation and GC load.
)
defer delay.Stop()
// This routine is responsible for frame output to rest of the pipeline.
go func() {
for {
err := rb.writeTo(dst)
if err != nil {
errCh <- fmt.Errorf("could not write to dst: %w", err)
}
<-delay.C
// Adjust delay using proportional controller.
adj := coef * float64(target-rb.len())
dMicro := float64(d.Microseconds()) + adj
d = time.Microsecond * time.Duration(math.Min(math.Max(dMicro, minDelay), maxDelay))
delay.Reset(d)
}
}()
// This loop is responsible for reading frames and checking any errors from
// the output routine.
for {
err := rb.readFrom(src)
if err != nil {
return fmt.Errorf("could not read src: %w", err)
}
select {
case err := <-errCh:
return fmt.Errorf("error from output routine: %w", err)
default:
}
}
}
// ringBuffer is a basic concurrency safe ring buffer. Concurrency safety is
// achieved using a channel between read and write methods i.e. overwrite/dropping
// behaviour is absent and blocking will occur.
type ringBuffer struct {
n int // Num. of elements.
i int // Current index in underlying buffer.
buf [][]byte // Underlying buffer.
ch chan []byte // ch will act as our concurrency safe queue.
timeout time.Duration // readFrom and writeTo timeout.
}
// newRingBuffer returns a new ringBuffer with sz as the element size in bytes
// and cap as the number of elements.
func newRingBuffer(sz, cap int, timeout time.Duration) *ringBuffer {
rb := &ringBuffer{
buf: make([][]byte, cap),
n: cap,
ch: make(chan []byte, cap),
}
for i := range rb.buf {
rb.buf[i] = make([]byte, sz)
}
return rb
}
// readFrom gets the next []byte from the buffer and uses it to read from r.
// This data is then stored in the buffer channel ready for writeTo to retreive.
// readFrom will block if the buffer channel is filled, at least within the
// timeout, otherwise an error is returned.
func (b *ringBuffer) readFrom(r io.Reader) error {
buf := b.buf[b.i]
b.i++
if b.i == b.n {
b.i = 0
}
n, err := r.Read(buf)
if err != nil {
return err
}
timeout := time.NewTimer(b.timeout)
select {
case b.ch <- buf[:n]:
case <-timeout.C:
return errors.New("buffer chan send timeout")
}
return nil
}
// writeTo tries to get a []byte from the buffer channel within the timeout
// and then writes to w if successful, otherwise an error is returned.
func (b *ringBuffer) writeTo(w io.Writer) error {
timeout := time.NewTimer(b.timeout)
select {
case p := <-b.ch:
_, err := w.Write(p)
if err != nil {
return err
}
case <-timeout.C:
return errors.New("buffer chan receive timeout")
}
return nil
}
func (b *ringBuffer) len() int {
return len(b.ch)
}