av/rtmp/packet.go

479 lines
12 KiB
Go

/*
NAME
packet.go
DESCRIPTION
RTMP packet functionality.
AUTHORS
Saxon Nelson-Milton <saxon@ausocean.org>
Dan Kortschak <dan@ausocean.org>
Alan Noble <alan@ausocean.org>
LICENSE
packet.go is Copyright (C) 2017-2019 the Australian Ocean Lab (AusOcean)
It is free software: you can redistribute it and/or modify them
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with revid in gpl.txt. If not, see http://www.gnu.org/licenses.
Derived from librtmp under the GNU Lesser General Public License 2.1
Copyright (C) 2005-2008 Team XBMC http://www.xbmc.org
Copyright (C) 2008-2009 Andrej Stepanchuk
Copyright (C) 2009-2010 Howard Chu
*/
package rtmp
import (
"encoding/binary"
"io"
"bitbucket.org/ausocean/av/rtmp/amf"
)
// Packet types.
const (
packetTypeChunkSize = 0x01
packetTypeBytesReadReport = 0x03
packetTypeControl = 0x04
packetTypeServerBW = 0x05
packetTypeClientBW = 0x06
packetTypeAudio = 0x08
packetTypeVideo = 0x09
packetTypeFlexStreamSend = 0x0F // not implemented
packetTypeFlexSharedObject = 0x10 // not implemented
packetTypeFlexMessage = 0x11 // not implemented
packetTypeInfo = 0x12
packetTypeInvoke = 0x14
packetTypeFlashVideo = 0x16 // not implemented
)
// Header sizes.
const (
headerSizeLarge = 0
headerSizeMedium = 1
headerSizeSmall = 2
headerSizeMinimum = 3
headerSizeAuto = 4
)
// Special channels.
const (
chanBytesRead = 0x02
chanControl = 0x03
chanSource = 0x04
)
// headerSizes defines header sizes for header types 0, 1, 2 and 3 respectively:
// 0: full header (12 bytes)
// 1: header without message ID (8 bytes)
// 2: basic header + timestamp (4 byes)
// 3: basic header (chunk type and stream ID) (1 byte)
var headerSizes = [...]int{12, 8, 4, 1}
// packet represents an RTMP packet.
type packet struct {
headerType uint8
packetType uint8
channel int32
hasAbsTimestamp bool
timestamp uint32
streamID uint32
bodySize uint32
buf []byte
body []byte
}
// readFrom reads a packet from the RTMP connection.
func (pkt *packet) readFrom(c *Conn) error {
var hbuf [fullHeaderSize]byte
header := hbuf[:]
_, err := c.read(header[:1])
if err != nil {
c.log(DebugLevel, pkg+"failed to read packet header 1st byte", "error", err.Error())
if err == io.EOF {
c.log(WarnLevel, pkg+"EOF error; connection likely terminated")
}
return err
}
pkt.headerType = (header[0] & 0xc0) >> 6
pkt.channel = int32(header[0] & 0x3f)
header = header[1:]
switch {
case pkt.channel == 0:
_, err = c.read(header[:1])
if err != nil {
c.log(DebugLevel, pkg+"failed to read packet header 2nd byte", "error", err.Error())
return err
}
header = header[1:]
pkt.channel = int32(header[0]) + 64
case pkt.channel == 1:
_, err = c.read(header[:2])
if err != nil {
c.log(DebugLevel, pkg+"failed to read packet header 3rd byte", "error", err.Error())
return err
}
header = header[2:]
pkt.channel = int32(binary.BigEndian.Uint16(header[:2])) + 64
}
if pkt.channel >= c.channelsAllocatedIn {
n := pkt.channel + 10
timestamp := append(c.channelTimestamp, make([]int32, 10)...)
var pkts []*packet
if c.channelsIn == nil {
pkts = make([]*packet, n)
} else {
pkts = append(c.channelsIn[:pkt.channel:pkt.channel], make([]*packet, 10)...)
}
c.channelTimestamp = timestamp
c.channelsIn = pkts
for i := int(c.channelsAllocatedIn); i < len(c.channelTimestamp); i++ {
c.channelTimestamp[i] = 0
}
for i := int(c.channelsAllocatedIn); i < int(n); i++ {
c.channelsIn[i] = nil
}
c.channelsAllocatedIn = n
}
size := headerSizes[pkt.headerType]
switch {
case size == fullHeaderSize:
pkt.hasAbsTimestamp = true
case size < fullHeaderSize:
if c.channelsIn[pkt.channel] != nil {
*pkt = *(c.channelsIn[pkt.channel])
}
}
size--
if size > 0 {
_, err = c.read(header[:size])
if err != nil {
c.log(DebugLevel, pkg+"failed to read packet header", "error", err.Error())
return err
}
}
hSize := len(hbuf) - len(header) + size
if size >= 3 {
pkt.timestamp = amf.DecodeInt24(header[:3])
if size >= 6 {
pkt.bodySize = amf.DecodeInt24(header[3:6])
if size > 6 {
pkt.packetType = header[6]
if size == 11 {
pkt.streamID = amf.DecodeInt32LE(header[7:11])
}
}
}
}
extendedTimestamp := pkt.timestamp == 0xffffff
if extendedTimestamp {
_, err = c.read(header[size : size+4])
if err != nil {
c.log(DebugLevel, pkg+"failed to read extended timestamp", "error", err.Error())
return err
}
pkt.timestamp = amf.DecodeInt32(header[size : size+4])
hSize += 4
}
pkt.resize(pkt.bodySize, pkt.headerType)
if pkt.bodySize > c.inChunkSize {
c.log(WarnLevel, pkg+"reading large packet", "size", int(pkt.bodySize))
}
_, err = c.read(pkt.body[:pkt.bodySize])
if err != nil {
c.log(DebugLevel, pkg+"failed to read packet body", "error", err.Error())
return err
}
// Keep the packet as a reference for other packets on this channel.
if c.channelsIn[pkt.channel] == nil {
c.channelsIn[pkt.channel] = &packet{}
}
*(c.channelsIn[pkt.channel]) = *pkt
if extendedTimestamp {
c.channelsIn[pkt.channel].timestamp = 0xffffff
}
if !pkt.hasAbsTimestamp {
// Timestamps seem to always be relative.
pkt.timestamp += uint32(c.channelTimestamp[pkt.channel])
}
c.channelTimestamp[pkt.channel] = int32(pkt.timestamp)
c.channelsIn[pkt.channel].body = nil
c.channelsIn[pkt.channel].hasAbsTimestamp = false
return nil
}
// resize adjusts the packet's storage (if necessary) to accommodate a body of the given size and header type.
// When headerSizeAuto is specified, the header type is computed based on packet type.
func (pkt *packet) resize(size uint32, ht uint8) {
if cap(pkt.buf) < fullHeaderSize+int(size) {
pkt.buf = make([]byte, fullHeaderSize+size)
}
pkt.body = pkt.buf[fullHeaderSize:]
if ht != headerSizeAuto {
pkt.headerType = ht
return
}
switch pkt.packetType {
case packetTypeVideo, packetTypeAudio:
if pkt.timestamp == 0 {
pkt.headerType = headerSizeLarge
} else {
pkt.headerType = headerSizeMedium
}
case packetTypeInfo:
pkt.headerType = headerSizeLarge
pkt.bodySize += 16
default:
pkt.headerType = headerSizeMedium
}
}
// writeTo writes a packet to the RTMP connection.
// Packets are written in chunks which are Session.chunkSize in length (128 bytes in length).
// We defer sending small audio packets and combine consecutive small audio packets where possible to reduce I/O.
// When queue is true, we expect a response to this request and cache the method on c.methodCalls.
func (pkt *packet) writeTo(c *Conn, queue bool) error {
if pkt.body == nil || pkt.bodySize == 0 {
return errInvalidBody
}
if pkt.channel >= c.channelsAllocatedOut {
c.log(DebugLevel, pkg+"growing channelsOut", "channel", pkt.channel)
n := int(pkt.channel + 10)
var pkts []*packet
if c.channelsOut == nil {
pkts = make([]*packet, n)
} else {
pkts = append(c.channelsOut[:pkt.channel:pkt.channel], make([]*packet, 10)...)
}
c.channelsOut = pkts
for i := int(c.channelsAllocatedOut); i < n; i++ {
c.channelsOut[i] = nil
}
c.channelsAllocatedOut = int32(n)
}
prevPkt := c.channelsOut[pkt.channel]
var last int
if prevPkt != nil && pkt.headerType != headerSizeLarge {
// Compress header by using the previous packet's attributes.
if prevPkt.bodySize == pkt.bodySize && prevPkt.packetType == pkt.packetType && pkt.headerType == headerSizeMedium {
pkt.headerType = headerSizeSmall
}
if prevPkt.timestamp == pkt.timestamp && pkt.headerType == headerSizeSmall {
pkt.headerType = headerSizeMinimum
}
last = int(prevPkt.timestamp)
}
if pkt.headerType > 3 {
c.log(WarnLevel, pkg+"unexpected header type", "type", pkt.headerType)
return errInvalidHeader
}
// The complete packet starts from headerSize _before_ the start the body.
// origIdx is the original offset, which will be 0 for a full (12-byte) header or 11 for a minimum (1-byte) header.
buf := pkt.buf
hSize := headerSizes[pkt.headerType]
origIdx := fullHeaderSize - hSize
// Adjust 1 or 2 bytes depending on the channel.
cSize := 0
switch {
case pkt.channel > 319:
cSize = 2
case pkt.channel > 63:
cSize = 1
}
if cSize != 0 {
origIdx -= cSize
hSize += cSize
}
// Adjust 4 bytes for the timestamp.
var ts uint32
if prevPkt != nil {
ts = uint32(int(pkt.timestamp) - last)
}
if ts >= 0xffffff {
origIdx -= 4
hSize += 4
c.log(DebugLevel, pkg+"larger timestamp than 24 bits", "timestamp", ts)
}
headerIdx := origIdx
ch := pkt.headerType << 6
switch cSize {
case 0:
ch |= byte(pkt.channel)
case 1:
// Do nothing.
case 2:
ch |= 1
}
buf[headerIdx] = ch
headerIdx++
if cSize != 0 {
tmp := pkt.channel - 64
buf[headerIdx] = byte(tmp & 0xff)
headerIdx++
if cSize == 2 {
buf[headerIdx] = byte(tmp >> 8)
headerIdx++
}
}
if headerSizes[pkt.headerType] > 1 {
tmp := ts
if ts > 0xffffff {
tmp = 0xffffff
}
amf.EncodeInt24(buf[headerIdx:], tmp)
headerIdx += 3 // 24bits
}
if headerSizes[pkt.headerType] > 4 {
amf.EncodeInt24(buf[headerIdx:], pkt.bodySize)
headerIdx += 3 // 24bits
buf[headerIdx] = pkt.packetType
headerIdx++
}
if headerSizes[pkt.headerType] > 8 {
binary.LittleEndian.PutUint32(buf[headerIdx:headerIdx+4], pkt.streamID)
headerIdx += 4 // 32bits
}
if ts >= 0xffffff {
amf.EncodeInt32(buf[headerIdx:], ts)
headerIdx += 4 // 32bits
}
size := int(pkt.bodySize)
chunkSize := int(c.outChunkSize)
if c.deferred == nil {
// Defer sending small audio packets (at most once).
if pkt.packetType == packetTypeAudio && size < chunkSize {
c.deferred = buf[origIdx:][:size+hSize]
c.log(DebugLevel, pkg+"deferred sending packet", "size", size, "la", c.link.conn.LocalAddr(), "ra", c.link.conn.RemoteAddr())
return nil
}
} else {
// Send previously deferred packet if combining it with the next one would exceed the chunk size.
if len(c.deferred)+size+hSize > chunkSize {
c.log(DebugLevel, pkg+"sending deferred packet separately", "size", len(c.deferred))
_, err := c.write(c.deferred)
if err != nil {
return err
}
c.deferred = nil
}
}
// TODO(kortschak): Rewrite this horrific peice of premature optimisation.
c.log(DebugLevel, pkg+"sending packet", "size", size, "la", c.link.conn.LocalAddr(), "ra", c.link.conn.RemoteAddr())
for size+hSize != 0 {
if chunkSize > size {
chunkSize = size
}
bytes := buf[origIdx:][:chunkSize+hSize]
if c.deferred != nil {
// Prepend the previously deferred packet and write it with the current one.
c.log(DebugLevel, pkg+"combining deferred packet", "size", len(c.deferred))
bytes = append(c.deferred, bytes...)
}
_, err := c.write(bytes)
if err != nil {
return err
}
c.deferred = nil
size -= chunkSize
origIdx += chunkSize + hSize
hSize = 0
if size > 0 {
// We are writing the 2nd or subsequent chunk.
origIdx -= 1 + cSize
hSize = 1 + cSize
if ts >= 0xffffff {
origIdx -= 4
hSize += 4
}
buf[origIdx] = 0xc0 | ch
if cSize != 0 {
tmp := int(pkt.channel) - 64
buf[origIdx+1] = byte(tmp)
if cSize == 2 {
buf[origIdx+2] = byte(tmp >> 8)
}
}
if ts >= 0xffffff {
extendedTimestamp := buf[origIdx+1+cSize:]
amf.EncodeInt32(extendedTimestamp[:4], ts)
}
}
}
// If we invoked a remote method and queue is true, we queue the method until the result arrives.
if pkt.packetType == packetTypeInvoke && queue {
buf := pkt.body[1:]
meth := amf.DecodeString(buf)
c.log(DebugLevel, pkg+"queuing method "+meth)
buf = buf[3+len(meth):]
txn := int32(amf.DecodeNumber(buf[:8]))
c.methodCalls = append(c.methodCalls, method{name: meth, num: txn})
}
if c.channelsOut[pkt.channel] == nil {
c.channelsOut[pkt.channel] = &packet{}
}
*(c.channelsOut[pkt.channel]) = *pkt
return nil
}