av/rtmp/amf/amf.go

493 lines
12 KiB
Go

/*
NAME
amf.go
DESCRIPTION
Action Message Format (AMF) encoding/decoding functions.
See https://en.wikipedia.org/wiki/Action_Message_Format.
AUTHORS
Saxon Nelson-Milton <saxon@ausocean.org>
Dan Kortschak <dan@ausocean.org>
Jake Lane <jake@ausocean.org>
Alan Noble <alan@ausocean.org>
LICENSE
amf.go is Copyright (C) 2017-2019 the Australian Ocean Lab (AusOcean)
It is free software: you can redistribute it and/or modify them
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with revid in gpl.txt. If not, see http://www.gnu.org/licenses.
Derived from librtmp under the GNU Lesser General Public License 2.1
Copyright (C) 2005-2008 Team XBMC http://www.xbmc.org
Copyright (C) 2008-2009 Andrej Stepanchuk
Copyright (C) 2009-2010 Howard Chu
*/
// Package amf implements Action Message Format (AMF) encoding and decoding.
// In AMF, encoding of numbers is big endian by default, unless specified otherwise.
// See https://en.wikipedia.org/wiki/Action_Message_Format.
package amf
import (
"encoding/binary"
"errors"
"math"
)
// AMF data types, as defined by the AMF specification.
// NB: we export these sparingly.
const (
typeNumber = 0x00
typeBoolean = 0x01
typeString = 0x02
TypeObject = 0x03
typeMovieClip = 0x04
TypeNull = 0x05
typeUndefined = 0x06
typeReference = 0x07
typeEcmaArray = 0x08
TypeObjectEnd = 0x09
typeStrictArray = 0x0A
typeDate = 0x0B
typeLongString = 0x0C
typeUnsupported = 0x0D
typeRecordset = 0x0E
typeXmlDoc = 0x0F
typeTypedObject = 0x10
typeAvmplus = 0x11
typeInvalid = 0xff
)
// AMF represents an AMF object, which is simply a collection of properties.
type Object struct {
Properties []Property
}
// Property represents an AMF property.
type Property struct {
Name string
Type uint8
Number float64
String string
Object Object
}
// AMF errors:
var (
ErrShortBuffer = errors.New("amf: short buffer") // The supplied buffer was too short.
ErrInvalidType = errors.New("amf: invalid type") // An invalid type was supplied to the encoder.
ErrUnexpectedType = errors.New("amf: unexpected end") // An unexpected type was encountered while decoding.
ErrPropertyNotFound = errors.New("amf: property not found") // The requested property was not found.
)
// DecodeInt16 decodes a 16-bit integer.
func DecodeInt16(buf []byte) uint16 {
return uint16(binary.BigEndian.Uint16(buf))
}
// DecodeInt24 decodes a 24-bit integer.
func DecodeInt24(buf []byte) uint32 {
return uint32(buf[0])<<16 | uint32(buf[1])<<8 | uint32(buf[2])
}
// DecodeInt32 decodes a 32-bit integer.
func DecodeInt32(buf []byte) uint32 {
return uint32(binary.BigEndian.Uint32(buf))
}
// DecodeInt32LE decodes a 32-bit little-endian integer.
func DecodeInt32LE(buf []byte) uint32 {
return uint32(binary.LittleEndian.Uint32(buf))
}
// DecodeString decodes a string that is less than 2^16 bytes long.
func DecodeString(buf []byte) string {
n := DecodeInt16(buf)
return string(buf[2 : 2+n])
}
// DecodeLongString decodes a long string.
func DecodeLongString(buf []byte) string {
n := DecodeInt32(buf)
return string(buf[2 : 2+n])
}
// DecodeNumber decodes a 64-bit floating-point number.
func DecodeNumber(buf []byte) float64 {
return math.Float64frombits(binary.BigEndian.Uint64(buf))
}
// DecodeBoolean decodes a boolean.
func DecodeBoolean(buf []byte) bool {
return buf[0] != 0
}
// EncodeInt24 encodes a 24-bit integer.
func EncodeInt24(buf []byte, val int32) ([]byte, error) {
if len(buf) < 3 {
return nil, ErrShortBuffer
}
buf[0] = byte(val >> 16)
buf[1] = byte(val >> 8)
buf[2] = byte(val)
return buf[3:], nil
}
// EncodeInt32 encodes a 32-bit integer.
func EncodeInt32(buf []byte, val int32) ([]byte, error) {
if len(buf) < 4 {
return nil, ErrShortBuffer
}
binary.BigEndian.PutUint32(buf, uint32(val))
return buf[4:], nil
}
// EncodeString encodes a string.
func EncodeString(buf []byte, val string) ([]byte, error) {
const typeSize = 1
if len(val) < 65536 && len(val)+typeSize+binary.Size(int16(0)) > len(buf) {
return nil, ErrShortBuffer
}
if len(val)+typeSize+binary.Size(int32(0)) > len(buf) {
return nil, ErrShortBuffer
}
if len(val) < 65536 {
buf[0] = typeString
buf = buf[1:]
binary.BigEndian.PutUint16(buf[:2], uint16(len(val)))
buf = buf[2:]
copy(buf, val)
return buf[len(val):], nil
}
buf[0] = typeLongString
buf = buf[1:]
binary.BigEndian.PutUint32(buf[:4], uint32(len(val)))
buf = buf[4:]
copy(buf, val)
return buf[len(val):], nil
}
// EncodeNumber encodes a 64-bit floating-point number.
func EncodeNumber(buf []byte, val float64) ([]byte, error) {
if len(buf) < 9 {
return nil, ErrShortBuffer
}
buf[0] = typeNumber
buf = buf[1:]
binary.BigEndian.PutUint64(buf, math.Float64bits(val))
return buf[8:], nil
}
// EncodeBoolean encodes a boolean.
func EncodeBoolean(buf []byte, val bool) ([]byte, error) {
if len(buf) < 2 {
return nil, ErrShortBuffer
}
buf[0] = typeBoolean
if val {
buf[1] = 1
} else {
buf[1] = 0
}
return buf[2:], nil
}
// EncodeNamedString encodes a named string, where key is the name and val is the string value.
func EncodeNamedString(buf []byte, key, val string) ([]byte, error) {
if 2+len(key) > len(buf) {
return nil, ErrShortBuffer
}
binary.BigEndian.PutUint16(buf[:2], uint16(len(key)))
buf = buf[2:]
copy(buf, key)
return EncodeString(buf[len(key):], val)
}
// EncodeNamedNumber encodes a named number, where key is the name and val is the number value.
func EncodeNamedNumber(buf []byte, key string, val float64) ([]byte, error) {
if 2+len(key) > len(buf) {
return nil, ErrShortBuffer
}
binary.BigEndian.PutUint16(buf[:2], uint16(len(key)))
buf = buf[2:]
copy(buf, key)
return EncodeNumber(buf[len(key):], val)
}
// EncodeNamedNumber encodes a named boolean, where key is the name and val is the boolean value.
func EncodeNamedBoolean(buf []byte, key string, val bool) ([]byte, error) {
if 2+len(key) > len(buf) {
return nil, ErrShortBuffer
}
binary.BigEndian.PutUint16(buf[:2], uint16(len(key)))
buf = buf[2:]
copy(buf, key)
return EncodeBoolean(buf[len(key):], val)
}
// EncodeProperty encodes a property.
func EncodeProperty(prop *Property, buf []byte) ([]byte, error) {
if prop.Type != TypeNull && prop.Name != "" {
if len(buf) < 2+len(prop.Name) {
return nil, ErrShortBuffer
}
binary.BigEndian.PutUint16(buf[:2], uint16(len(prop.Name)))
buf = buf[2:]
copy(buf, prop.Name)
buf = buf[len(prop.Name):]
}
switch prop.Type {
case typeNumber:
return EncodeNumber(buf, prop.Number)
case typeBoolean:
return EncodeBoolean(buf, prop.Number != 0)
case typeString:
return EncodeString(buf, prop.String)
case TypeNull:
if len(buf) < 2 {
return nil, ErrShortBuffer
}
buf[0] = TypeNull
buf = buf[1:]
case TypeObject:
return Encode(&prop.Object, buf)
case typeEcmaArray:
return EncodeEcmaArray(&prop.Object, buf)
case typeStrictArray:
return EncodeArray(&prop.Object, buf)
default:
return nil, ErrInvalidType
}
return buf, nil
}
// DecodeProperty decodes a property, returning the number of bytes consumed from the supplied buffer.
func DecodeProperty(prop *Property, buf []byte, decodeName bool) (int, error) {
sz := len(buf)
if decodeName {
if len(buf) < 4 {
return 0, ErrShortBuffer
}
n := DecodeInt16(buf[:2])
if int(n) > len(buf)-2 {
return 0, ErrShortBuffer
}
prop.Name = DecodeString(buf)
buf = buf[2+n:]
} else {
prop.Name = ""
}
prop.Type = uint8(buf[0])
buf = buf[1:]
switch prop.Type {
case typeNumber:
if len(buf) < 8 {
return 0, ErrShortBuffer
}
prop.Number = DecodeNumber(buf[:8])
buf = buf[8:]
case typeBoolean:
if len(buf) < 1 {
return 0, ErrShortBuffer
}
prop.Number = float64(uint8(buf[0]))
buf = buf[1:]
case typeString:
n := DecodeInt16(buf[:2])
if len(buf) < int(n+2) {
return 0, ErrShortBuffer
}
prop.String = DecodeString(buf)
buf = buf[2+n:]
case TypeObject:
n, err := Decode(&prop.Object, buf, true)
if err != nil {
return 0, err
}
buf = buf[n:]
case TypeNull, typeUndefined, typeUnsupported:
prop.Type = TypeNull
case typeEcmaArray:
buf = buf[4:]
n, err := Decode(&prop.Object, buf, true)
if err != nil {
return 0, err
}
buf = buf[n:]
default:
return 0, ErrUnexpectedType
}
return sz - len(buf), nil
}
// Encode encodes an Object into its AMF representation.
// This is the top-level encoding function and is typically the only function callers will need to use.
func Encode(obj *Object, buf []byte) ([]byte, error) {
if len(buf) < 5 {
return nil, ErrShortBuffer
}
buf[0] = TypeObject
buf = buf[1:]
for i := 0; i < len(obj.Properties); i++ {
var err error
buf, err = EncodeProperty(&obj.Properties[i], buf)
if err != nil {
return nil, err
}
}
if len(buf) < 3 {
return nil, ErrShortBuffer
}
return EncodeInt24(buf, TypeObjectEnd)
}
// EncodeEcmaArray encodes an ECMA array.
func EncodeEcmaArray(obj *Object, buf []byte) ([]byte, error) {
if len(buf) < 5 {
return nil, ErrShortBuffer
}
buf[0] = typeEcmaArray
buf = buf[1:]
binary.BigEndian.PutUint32(buf[:4], uint32(len(obj.Properties)))
buf = buf[4:]
for i := 0; i < len(obj.Properties); i++ {
var err error
buf, err = EncodeProperty(&obj.Properties[i], buf)
if err != nil {
return nil, err
}
}
if len(buf) < 3 {
return nil, ErrShortBuffer
}
return EncodeInt24(buf, TypeObjectEnd)
}
// EncodeArray encodes an array.
func EncodeArray(obj *Object, buf []byte) ([]byte, error) {
if len(buf) < 5 {
return nil, ErrShortBuffer
}
buf[0] = typeStrictArray
buf = buf[1:]
binary.BigEndian.PutUint32(buf[:4], uint32(len(obj.Properties)))
buf = buf[4:]
for i := 0; i < len(obj.Properties); i++ {
var err error
buf, err = EncodeProperty(&obj.Properties[i], buf)
if err != nil {
return nil, err
}
}
return buf, nil
}
// Decode decodes an object. Property names are only decoded if decodeName is true.
func Decode(obj *Object, buf []byte, decodeName bool) (int, error) {
sz := len(buf)
obj.Properties = obj.Properties[:0]
for len(buf) != 0 {
if len(buf) >= 3 && DecodeInt24(buf[:3]) == TypeObjectEnd {
buf = buf[3:]
break
}
var prop Property
n, err := DecodeProperty(&prop, buf, decodeName)
if err != nil {
return 0, err
}
buf = buf[n:]
obj.Properties = append(obj.Properties, prop)
}
return sz - len(buf), nil
}
// Object methods:
// Property returns a property, either by its index when idx is non-negative, or by its name otherwise.
// If the requested property is not found or the type does not match, an ErrPropertyNotFound error is returned.
func (obj *Object) Property(name string, idx int, typ uint8) (*Property, error) {
var prop *Property
if idx >= 0 {
if idx < len(obj.Properties) {
prop = &obj.Properties[idx]
}
} else {
for i, p := range obj.Properties {
if p.Name == name {
prop = &obj.Properties[i]
break
}
}
}
if prop == nil || prop.Type != typ {
return nil, ErrPropertyNotFound
}
return prop, nil
}
// NumberProperty is a wrapper for Property that returns a Number property's value, if any.
func (obj *Object) NumberProperty(name string, idx int) (float64, error) {
prop, err := obj.Property(name, idx, typeNumber)
if err != nil {
return 0, err
}
return prop.Number, nil
}
// StringProperty is a wrapper for Property that returns a String property's value, if any.
func (obj *Object) StringProperty(name string, idx int) (string, error) {
prop, err := obj.Property(name, idx, typeString)
if err != nil {
return "", err
}
return prop.String, nil
}
// ObjectProperty is a wrapper for Property that returns an Object property's value, if any.
func (obj *Object) ObjectProperty(name string, idx int) (*Object, error) {
prop, err := obj.Property(name, idx, TypeObject)
if err != nil {
return nil, err
}
return &prop.Object, nil
}