mirror of https://bitbucket.org/ausocean/av.git
225 lines
6.1 KiB
Go
225 lines
6.1 KiB
Go
/*
|
|
NAME
|
|
pcm.go
|
|
|
|
DESCRIPTION
|
|
pcm.go contains functions for processing pcm.
|
|
|
|
AUTHOR
|
|
Trek Hopton <trek@ausocean.org>
|
|
|
|
LICENSE
|
|
pcm.go is Copyright (C) 2019 the Australian Ocean Lab (AusOcean)
|
|
|
|
It is free software: you can redistribute it and/or modify them
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation, either version 3 of the License, or (at your
|
|
option) any later version.
|
|
|
|
It is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License in gpl.txt.
|
|
If not, see [GNU licenses](http://www.gnu.org/licenses).
|
|
*/
|
|
|
|
// Package pcm provides functions for processing and converting pcm audio.
|
|
package pcm
|
|
|
|
import (
|
|
"encoding/binary"
|
|
"fmt"
|
|
|
|
"github.com/pkg/errors"
|
|
)
|
|
|
|
// SampleFormat is the format that a PCM Buffer's samples can be in.
|
|
type SampleFormat int
|
|
|
|
// Used to represent an unknown format.
|
|
const (
|
|
Unknown SampleFormat = -1
|
|
)
|
|
|
|
// Sample formats that we use.
|
|
const (
|
|
S16_LE SampleFormat = iota
|
|
S32_LE
|
|
// There are many more:
|
|
// https://linux.die.net/man/1/arecord
|
|
// https://trac.ffmpeg.org/wiki/audio%20types
|
|
)
|
|
|
|
// BufferFormat contains the format for a PCM Buffer.
|
|
type BufferFormat struct {
|
|
SFormat SampleFormat
|
|
Rate uint
|
|
Channels uint
|
|
}
|
|
|
|
// Buffer contains a buffer of PCM data and the format that it is in.
|
|
type Buffer struct {
|
|
Format BufferFormat
|
|
Data []byte
|
|
}
|
|
|
|
// DataSize takes audio attributes describing PCM audio data and returns the size of that data.
|
|
func DataSize(rate, channels, bitDepth uint, period float64) int {
|
|
s := int(float64(channels) * float64(rate) * float64(bitDepth/8) * period)
|
|
return s
|
|
}
|
|
|
|
// Resample takes Buffer c and resamples the pcm audio data to 'rate' Hz and returns a Buffer with the resampled data.
|
|
// Notes:
|
|
// - Currently only downsampling is implemented and c's rate must be divisible by 'rate' or an error will occur.
|
|
// - If the number of bytes in c.Data is not divisible by the decimation factor (ratioFrom), the remaining bytes will
|
|
// not be included in the result. Eg. input of length 480002 downsampling 6:1 will result in output length 80000.
|
|
func Resample(c Buffer, rate uint) (Buffer, error) {
|
|
if c.Format.Rate == rate {
|
|
return c, nil
|
|
}
|
|
if c.Format.Rate < 0 {
|
|
return Buffer{}, fmt.Errorf("Unable to convert from: %v Hz", c.Format.Rate)
|
|
}
|
|
if rate < 0 {
|
|
return Buffer{}, fmt.Errorf("Unable to convert to: %v Hz", rate)
|
|
}
|
|
|
|
// The number of bytes in a sample.
|
|
var sampleLen int
|
|
switch c.Format.SFormat {
|
|
case S32_LE:
|
|
sampleLen = int(4 * c.Format.Channels)
|
|
case S16_LE:
|
|
sampleLen = int(2 * c.Format.Channels)
|
|
default:
|
|
return Buffer{}, fmt.Errorf("Unhandled ALSA format: %v", c.Format.SFormat)
|
|
}
|
|
inPcmLen := len(c.Data)
|
|
|
|
// Calculate sample rate ratio ratioFrom:ratioTo.
|
|
rateGcd := gcd(rate, c.Format.Rate)
|
|
ratioFrom := int(c.Format.Rate / rateGcd)
|
|
ratioTo := int(rate / rateGcd)
|
|
|
|
// ratioTo = 1 is the only number that will result in an even sampling.
|
|
if ratioTo != 1 {
|
|
return Buffer{}, fmt.Errorf("unhandled from:to rate ratio %v:%v: 'to' must be 1", ratioFrom, ratioTo)
|
|
}
|
|
|
|
newLen := inPcmLen / ratioFrom
|
|
resampled := make([]byte, 0, newLen)
|
|
|
|
// For each new sample to be generated, loop through the respective 'ratioFrom' samples in 'c.Data' to add them
|
|
// up and average them. The result is the new sample.
|
|
bAvg := make([]byte, sampleLen)
|
|
for i := 0; i < newLen/sampleLen; i++ {
|
|
var sum int
|
|
for j := 0; j < ratioFrom; j++ {
|
|
switch c.Format.SFormat {
|
|
case S32_LE:
|
|
sum += int(int32(binary.LittleEndian.Uint32(c.Data[(i*ratioFrom*sampleLen)+(j*sampleLen) : (i*ratioFrom*sampleLen)+((j+1)*sampleLen)])))
|
|
case S16_LE:
|
|
sum += int(int16(binary.LittleEndian.Uint16(c.Data[(i*ratioFrom*sampleLen)+(j*sampleLen) : (i*ratioFrom*sampleLen)+((j+1)*sampleLen)])))
|
|
}
|
|
}
|
|
avg := sum / ratioFrom
|
|
switch c.Format.SFormat {
|
|
case S32_LE:
|
|
binary.LittleEndian.PutUint32(bAvg, uint32(avg))
|
|
case S16_LE:
|
|
binary.LittleEndian.PutUint16(bAvg, uint16(avg))
|
|
}
|
|
resampled = append(resampled, bAvg...)
|
|
}
|
|
|
|
// Return a new Buffer with resampled data.
|
|
return Buffer{
|
|
Format: BufferFormat{
|
|
Channels: c.Format.Channels,
|
|
SFormat: c.Format.SFormat,
|
|
Rate: rate,
|
|
},
|
|
Data: resampled,
|
|
}, nil
|
|
}
|
|
|
|
// StereoToMono returns raw mono audio data generated from only the left channel from
|
|
// the given stereo Buffer
|
|
func StereoToMono(c Buffer) (Buffer, error) {
|
|
if c.Format.Channels == 1 {
|
|
return c, nil
|
|
}
|
|
if c.Format.Channels != 2 {
|
|
return Buffer{}, fmt.Errorf("Audio is not stereo or mono, it has %v channels", c.Format.Channels)
|
|
}
|
|
|
|
var stereoSampleBytes int
|
|
switch c.Format.SFormat {
|
|
case S32_LE:
|
|
stereoSampleBytes = 8
|
|
case S16_LE:
|
|
stereoSampleBytes = 4
|
|
default:
|
|
return Buffer{}, fmt.Errorf("Unhandled sample format %v", c.Format.SFormat)
|
|
}
|
|
|
|
recLength := len(c.Data)
|
|
mono := make([]byte, recLength/2)
|
|
|
|
// Convert to mono: for each byte in the stereo recording, if it's in the first half of a stereo sample
|
|
// (left channel), add it to the new mono audio data.
|
|
var inc int
|
|
for i := 0; i < recLength; i++ {
|
|
if i%stereoSampleBytes < stereoSampleBytes/2 {
|
|
mono[inc] = c.Data[i]
|
|
inc++
|
|
}
|
|
}
|
|
|
|
// Return a new Buffer with resampled data.
|
|
return Buffer{
|
|
Format: BufferFormat{
|
|
Channels: 1,
|
|
SFormat: c.Format.SFormat,
|
|
Rate: c.Format.Rate,
|
|
},
|
|
Data: mono,
|
|
}, nil
|
|
}
|
|
|
|
// gcd is used for calculating the greatest common divisor of two positive integers, a and b.
|
|
// assumes given a and b are positive.
|
|
func gcd(a, b uint) uint {
|
|
for b != 0 {
|
|
a, b = b, a%b
|
|
}
|
|
return a
|
|
}
|
|
|
|
// String returns the string representation of a SampleFormat.
|
|
func (f SampleFormat) String() string {
|
|
switch f {
|
|
case S16_LE:
|
|
return "S16_LE"
|
|
case S32_LE:
|
|
return "S32_LE"
|
|
default:
|
|
return "Unknown"
|
|
}
|
|
}
|
|
|
|
// SFFromString takes a string representing a sample format and returns the corresponding SampleFormat.
|
|
func SFFromString(s string) (SampleFormat, error) {
|
|
switch s {
|
|
case "S16_LE":
|
|
return S16_LE, nil
|
|
case "S32_LE":
|
|
return S32_LE, nil
|
|
default:
|
|
return Unknown, errors.Errorf("unknown sample format (%s)", s)
|
|
}
|
|
}
|