mirror of https://bitbucket.org/ausocean/av.git
356 lines
10 KiB
Go
356 lines
10 KiB
Go
/*
|
|
NAME
|
|
adpcm.go
|
|
|
|
AUTHOR
|
|
Trek Hopton <trek@ausocean.org>
|
|
|
|
LICENSE
|
|
adpcm.go is Copyright (C) 2018 the Australian Ocean Lab (AusOcean)
|
|
|
|
It is free software: you can redistribute it and/or modify them
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation, either version 3 of the License, or (at your
|
|
option) any later version.
|
|
|
|
It is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License in gpl.txt.
|
|
If not, see [GNU licenses](http://www.gnu.org/licenses).
|
|
*/
|
|
|
|
/*
|
|
Original IMA/DVI ADPCM specification: (http://www.cs.columbia.edu/~hgs/audio/dvi/IMA_ADPCM.pdf).
|
|
Reference algorithms for ADPCM compression and decompression are in part 6.
|
|
*/
|
|
|
|
// Package adpcm provides functions to transcode between PCM and ADPCM.
|
|
package adpcm
|
|
|
|
import (
|
|
"encoding/binary"
|
|
"fmt"
|
|
"io"
|
|
"math"
|
|
)
|
|
|
|
const (
|
|
byteDepth = 2 // We are working with 16-bit samples. TODO(Trek): make configurable.
|
|
initSamps = 2 // Number of samples used to initialise the encoder.
|
|
initBytes = initSamps * byteDepth
|
|
headBytes = 4 // Number of bytes in the header of ADPCM.
|
|
samplesPerEnc = 2 // Number of sample encoded at a time eg. 2 16-bit samples get encoded into 1 byte.
|
|
bytesPerEnc = samplesPerEnc * byteDepth
|
|
compFact = 4 // In general ADPCM compresses by a factor of 4.
|
|
)
|
|
|
|
// Table of index changes (see spec).
|
|
var indexTable = []int16{
|
|
-1, -1, -1, -1, 2, 4, 6, 8,
|
|
-1, -1, -1, -1, 2, 4, 6, 8,
|
|
}
|
|
|
|
// Quantize step size table (see spec).
|
|
var stepTable = []int16{
|
|
7, 8, 9, 10, 11, 12, 13, 14,
|
|
16, 17, 19, 21, 23, 25, 28, 31,
|
|
34, 37, 41, 45, 50, 55, 60, 66,
|
|
73, 80, 88, 97, 107, 118, 130, 143,
|
|
157, 173, 190, 209, 230, 253, 279, 307,
|
|
337, 371, 408, 449, 494, 544, 598, 658,
|
|
724, 796, 876, 963, 1060, 1166, 1282, 1411,
|
|
1552, 1707, 1878, 2066, 2272, 2499, 2749, 3024,
|
|
3327, 3660, 4026, 4428, 4871, 5358, 5894, 6484,
|
|
7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
|
|
15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794,
|
|
32767,
|
|
}
|
|
|
|
// Encoder is used to encode to ADPCM from PCM data.
|
|
type Encoder struct {
|
|
// dst is the destination for ADPCM-encoded data.
|
|
dst io.Writer
|
|
|
|
est int16 // Estimation of sample based on quantised ADPCM nibble.
|
|
idx int16 // Index to step used for estimation.
|
|
}
|
|
|
|
// Decoder is used to decode from ADPCM to PCM data.
|
|
type Decoder struct {
|
|
// dst is the destination for PCM-encoded data.
|
|
dst io.Writer
|
|
|
|
est int16 // Estimation of sample based on quantised ADPCM nibble.
|
|
idx int16 // Index to step used for estimation.
|
|
step int16
|
|
}
|
|
|
|
// NewEncoder retuns a new ADPCM Encoder.
|
|
func NewEncoder(dst io.Writer) *Encoder {
|
|
return &Encoder{dst: dst}
|
|
}
|
|
|
|
// encodeSample takes a single 16 bit PCM sample and
|
|
// returns a byte of which the last 4 bits are an encoded ADPCM nibble.
|
|
func (e *Encoder) encodeSample(sample int16) byte {
|
|
// Find difference between the sample and the previous estimation.
|
|
delta := capAdd16(sample, -e.est)
|
|
|
|
// Create and set sign bit for nibble and find absolute value of difference.
|
|
var nib byte
|
|
if delta < 0 {
|
|
nib = 8
|
|
delta = -delta
|
|
}
|
|
|
|
step := stepTable[e.idx]
|
|
diff := step >> 3
|
|
var mask byte = 4
|
|
|
|
for i := 0; i < 3; i++ {
|
|
if delta > step {
|
|
nib |= mask
|
|
delta = capAdd16(delta, -step)
|
|
diff = capAdd16(diff, step)
|
|
}
|
|
mask >>= 1
|
|
step >>= 1
|
|
}
|
|
|
|
if nib&8 != 0 {
|
|
diff = -diff
|
|
}
|
|
|
|
// Adjust estimated sample based on calculated difference.
|
|
e.est = capAdd16(e.est, diff)
|
|
|
|
e.idx += indexTable[nib&7]
|
|
|
|
// Check for underflow and overflow.
|
|
if e.idx < 0 {
|
|
e.idx = 0
|
|
} else if e.idx > int16(len(stepTable)-1) {
|
|
e.idx = int16(len(stepTable) - 1)
|
|
}
|
|
|
|
return nib
|
|
}
|
|
|
|
// calcHead sets the state for the Encoder by running the first sample through
|
|
// the Encoder, and writing the first sample to the Encoder's io.Writer (dst).
|
|
// It returns the number of bytes written to the Encoder's destination and the first error encountered.
|
|
func (e *Encoder) calcHead(sample []byte, pad bool) (int, error) {
|
|
// Check that we are given 1 sample.
|
|
if len(sample) != byteDepth {
|
|
return 0, fmt.Errorf("length of given byte array is: %v, expected: %v", len(sample), byteDepth)
|
|
}
|
|
|
|
n, err := e.dst.Write(sample)
|
|
if err != nil {
|
|
return n, err
|
|
}
|
|
|
|
_n, err := e.dst.Write([]byte{byte(int16(e.idx))})
|
|
if err != nil {
|
|
return n, err
|
|
}
|
|
n += _n
|
|
|
|
if pad {
|
|
_n, err = e.dst.Write([]byte{0x01})
|
|
} else {
|
|
_n, err = e.dst.Write([]byte{0x00})
|
|
}
|
|
n += _n
|
|
if err != nil {
|
|
return n, err
|
|
}
|
|
return n, nil
|
|
}
|
|
|
|
// init initializes the Encoder's estimation to the first uncompressed sample and the index to
|
|
// point to a suitable quantizer step size.
|
|
// The suitable step size is the closest step size in the stepTable to half the absolute difference of the first two samples.
|
|
func (e *Encoder) init(samples []byte) {
|
|
int1 := int16(binary.LittleEndian.Uint16(samples[:byteDepth]))
|
|
int2 := int16(binary.LittleEndian.Uint16(samples[byteDepth:initBytes]))
|
|
e.est = int1
|
|
|
|
halfDiff := math.Abs(math.Abs(float64(int1)) - math.Abs(float64(int2))/2)
|
|
closest := math.Abs(float64(stepTable[0]) - halfDiff)
|
|
var cInd int16
|
|
for i, step := range stepTable {
|
|
if math.Abs(float64(step)-halfDiff) < closest {
|
|
closest = math.Abs(float64(step) - halfDiff)
|
|
cInd = int16(i)
|
|
}
|
|
}
|
|
e.idx = cInd
|
|
}
|
|
|
|
// Write takes a slice of bytes of arbitrary length representing pcm and encodes it into adpcm.
|
|
// It writes its output to the Encoder's dst.
|
|
// The number of bytes written out is returned along with any error that occured.
|
|
func (e *Encoder) Write(b []byte) (int, error) {
|
|
// Check that pcm has enough data to initialize Decoder.
|
|
pcmLen := len(b)
|
|
if pcmLen < initBytes {
|
|
return 0, fmt.Errorf("length of given byte array must be >= %v", initBytes)
|
|
}
|
|
|
|
// Determine if there will be a byte that won't contain two full nibbles and will need padding.
|
|
pad := false
|
|
if (pcmLen-byteDepth)%bytesPerEnc != 0 {
|
|
pad = true
|
|
}
|
|
|
|
e.init(b[:initBytes])
|
|
n, err := e.calcHead(b[:byteDepth], pad)
|
|
if err != nil {
|
|
return n, err
|
|
}
|
|
// Skip the first sample and start at the end of the first two samples, then every two samples encode them into a byte of adpcm.
|
|
for i := byteDepth; i+bytesPerEnc-1 < pcmLen; i += bytesPerEnc {
|
|
nib1 := e.encodeSample(int16(binary.LittleEndian.Uint16(b[i : i+byteDepth])))
|
|
nib2 := e.encodeSample(int16(binary.LittleEndian.Uint16(b[i+byteDepth : i+bytesPerEnc])))
|
|
_n, err := e.dst.Write([]byte{byte((nib2 << 4) | nib1)})
|
|
n += _n
|
|
if err != nil {
|
|
return n, err
|
|
}
|
|
}
|
|
// If we've reached the end of the pcm data and there's a sample left over,
|
|
// compress it to a nibble and leave the first half of the byte padded with 0s.
|
|
if pad {
|
|
nib := e.encodeSample(int16(binary.LittleEndian.Uint16(b[pcmLen-byteDepth : pcmLen])))
|
|
_n, err := e.dst.Write([]byte{nib})
|
|
n += _n
|
|
if err != nil {
|
|
return n, err
|
|
}
|
|
}
|
|
return n, nil
|
|
}
|
|
|
|
// NewDecoder retuns a new ADPCM Decoder.
|
|
func NewDecoder(dst io.Writer) *Decoder {
|
|
return &Decoder{dst: dst}
|
|
}
|
|
|
|
// decodeSample takes a byte, the last 4 bits of which contain a single
|
|
// 4 bit ADPCM nibble, and returns a 16 bit decoded PCM sample.
|
|
func (d *Decoder) decodeSample(nibble byte) int16 {
|
|
// Calculate difference.
|
|
var diff int16
|
|
if nibble&4 != 0 {
|
|
diff = capAdd16(diff, d.step)
|
|
}
|
|
if nibble&2 != 0 {
|
|
diff = capAdd16(diff, d.step>>1)
|
|
}
|
|
if nibble&1 != 0 {
|
|
diff = capAdd16(diff, d.step>>2)
|
|
}
|
|
diff = capAdd16(diff, d.step>>3)
|
|
|
|
// Account for sign bit.
|
|
if nibble&8 != 0 {
|
|
diff = -diff
|
|
}
|
|
|
|
// Adjust estimated sample based on calculated difference.
|
|
d.est = capAdd16(d.est, diff)
|
|
|
|
// Adjust index into step size lookup table using nibble.
|
|
d.idx += indexTable[nibble]
|
|
|
|
// Check for overflow and underflow.
|
|
if d.idx < 0 {
|
|
d.idx = 0
|
|
} else if d.idx > int16(len(stepTable)-1) {
|
|
d.idx = int16(len(stepTable) - 1)
|
|
}
|
|
|
|
// Find new quantizer step size.
|
|
d.step = stepTable[d.idx]
|
|
|
|
return d.est
|
|
}
|
|
|
|
// Write takes a slice of bytes of arbitrary length representing adpcm and decodes it into pcm.
|
|
// It writes its output to the Decoder's dst.
|
|
// The number of bytes written out is returned along with any error that occured.
|
|
func (d *Decoder) Write(b []byte) (int, error) {
|
|
// Initialize Decoder with first 4 bytes of b.
|
|
d.est = int16(binary.LittleEndian.Uint16(b[:byteDepth]))
|
|
d.idx = int16(b[byteDepth])
|
|
d.step = stepTable[d.idx]
|
|
n, err := d.dst.Write(b[:byteDepth])
|
|
if err != nil {
|
|
return n, err
|
|
}
|
|
|
|
// For each byte, seperate it into two nibbles (each nibble is a compressed sample),
|
|
// then decode each nibble and output the resulting 16-bit samples.
|
|
// If padding flag is true (b[3]), only decode up until the last byte, then decode that separately.
|
|
for i := headBytes; i < len(b)-int(b[3]); i++ {
|
|
twoNibs := b[i]
|
|
nib2 := byte(twoNibs >> 4)
|
|
nib1 := byte((nib2 << 4) ^ twoNibs)
|
|
|
|
firstBytes := make([]byte, byteDepth)
|
|
binary.LittleEndian.PutUint16(firstBytes, uint16(d.decodeSample(nib1)))
|
|
_n, err := d.dst.Write(firstBytes)
|
|
n += _n
|
|
if err != nil {
|
|
return n, err
|
|
}
|
|
|
|
secondBytes := make([]byte, byteDepth)
|
|
binary.LittleEndian.PutUint16(secondBytes, uint16(d.decodeSample(nib2)))
|
|
_n, err = d.dst.Write(secondBytes)
|
|
n += _n
|
|
if err != nil {
|
|
return n, err
|
|
}
|
|
}
|
|
if b[3] == 0x01 {
|
|
padNib := b[len(b)-1]
|
|
samp := make([]byte, byteDepth)
|
|
binary.LittleEndian.PutUint16(samp, uint16(d.decodeSample(padNib)))
|
|
_n, err := d.dst.Write(samp)
|
|
n += _n
|
|
if err != nil {
|
|
return n, err
|
|
}
|
|
}
|
|
return n, nil
|
|
}
|
|
|
|
// capAdd16 adds two int16s together and caps at max/min int16 instead of overflowing
|
|
func capAdd16(a, b int16) int16 {
|
|
c := int32(a) + int32(b)
|
|
switch {
|
|
case c < math.MinInt16:
|
|
return math.MinInt16
|
|
case c > math.MaxInt16:
|
|
return math.MaxInt16
|
|
default:
|
|
return int16(c)
|
|
}
|
|
}
|
|
|
|
// EncBytes will return the number of adpcm bytes that will be generated when encoding the given amount of pcm bytes (n).
|
|
func EncBytes(n int) int {
|
|
// For 'n' pcm bytes, 1 sample is left uncompressed, the rest is compressed by a factor of 4
|
|
// and a start index and padding-flag byte are added.
|
|
// Also if there are an even number of samples, there will be half a byte of padding added to the last byte.
|
|
if n%bytesPerEnc == 0 {
|
|
return (n-byteDepth)/compFact + headBytes + 1
|
|
}
|
|
return (n-byteDepth)/compFact + headBytes
|
|
}
|