av/cmd/audio-player/adpcm.js

147 lines
4.3 KiB
JavaScript

/*
NAME
adpcm.js
AUTHOR
Trek Hopton <trek@ausocean.org>
LICENSE
This file is Copyright (C) 2018 the Australian Ocean Lab (AusOcean)
It is free software: you can redistribute it and/or modify them
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License in gpl.txt.
If not, see [GNU licenses](http://www.gnu.org/licenses).
*/
/*
Original IMA/DVI ADPCM specification: (http://www.cs.columbia.edu/~hgs/audio/dvi/IMA_ADPCM.pdf).
Reference algorithms for ADPCM compression and decompression are in part 6.
*/
// Table of index changes (see spec).
const indexTable = [
-1, -1, -1, -1, 2, 4, 6, 8,
-1, -1, -1, -1, 2, 4, 6, 8
];
// Quantize step size table (see spec).
const stepTable = [
7, 8, 9, 10, 11, 12, 13, 14,
16, 17, 19, 21, 23, 25, 28, 31,
34, 37, 41, 45, 50, 55, 60, 66,
73, 80, 88, 97, 107, 118, 130, 143,
157, 173, 190, 209, 230, 253, 279, 307,
337, 371, 408, 449, 494, 544, 598, 658,
724, 796, 876, 963, 1060, 1166, 1282, 1411,
1552, 1707, 1878, 2066, 2272, 2499, 2749, 3024,
3327, 3660, 4026, 4428, 4871, 5358, 5894, 6484,
7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794,
32767
];
const byteDepth = 2; // We are working with 16-bit samples. TODO(Trek): make configurable.
const headSize = 8; // Number of bytes in the header of ADPCM.
const chunkLenSize = 4;
let est = 0; // Estimation of sample based on quantised ADPCM nibble.
let idx = 0; // Index to step used for estimation.
let step = 0;
// decodeSample takes 4 bits which represents a single ADPCM nibble, and returns a 16 bit decoded PCM sample.
function decodeSample(nibble) {
let diff = 0;
if ((nibble & 4) != 0) {
diff += step;
}
if ((nibble & 2) != 0) {
diff += step >> 1;
}
if ((nibble & 1) != 0) {
diff += step >> 2;
}
diff += step >> 3;
if ((nibble & 8) != 0) {
diff = -diff;
}
est += diff;
idx += indexTable[nibble];
if (idx < 0) {
idx = 0;
} else if (idx > stepTable.length - 1) {
idx = stepTable.length - 1;
}
step = stepTable[idx];
result = est;
return result;
}
// decode takes an array of bytes of arbitrary length representing adpcm and decodes it into pcm.
function decode(b) {
// Iterate over each chunk and decode it.
let chunkLen;
var result = [];
for (var off = 0; off + headSize <= b.length; off += chunkLen) {
// Read length of chunk and check if whole chunk exists.
chunkLen = bytesToInt32(b.slice(off, off + chunkLenSize))
if (off + chunkLen > b.length) {
break;
}
// Initialize Decoder with first 4 bytes of b.
est = bytesToInt16(b.slice(off + chunkLenSize, off + chunkLenSize + byteDepth));
idx = b[off + chunkLenSize + byteDepth];
step = stepTable[idx];
result.push(...b.slice(off + chunkLenSize, off + chunkLenSize + byteDepth));
for (var i = off + headSize; i < off + chunkLen - b[off + chunkLenSize + 3]; i++) {
var twoNibs = b[i];
var nib2 = twoNibs >> 4;
var nib1 = (nib2 << 4) ^ twoNibs;
var sample1 = int16ToBytes(decodeSample(nib1));
result.push(...sample1);
var sample2 = int16ToBytes(decodeSample(nib2));
result.push(...sample2);
}
if (b[off + chunkLenSize + 3] == 1) {
var padNib = b[off + chunkLen - 1];
var sample = int16ToBytes(decodeSample(padNib));
result.push(...sample);
}
}
return result;
}
// int16ToBytes takes a number assumed to be an int 16 and converts it to an array containing bytes (Little Endian).
function int16ToBytes(num) {
return [(num & 0x00ff), (num & 0xff00) >> 8];
}
// bytesToInt16 takes an array of bytes (assumed to be values between 0 and 255), interprates them as little endian and converts it to an int16.
function bytesToInt16(b) {
return (b[0] | (b[1] << 8));
}
// bytesToInt32 takes an array of bytes (assumed to be values between 0 and 255), interprates them as little endian and converts it to an int32.
function bytesToInt32(b) {
return (b[0] |
(b[1] << 8) |
(b[2] << 16) |
(b[3] << 24));
}