mirror of https://bitbucket.org/ausocean/av.git
180 lines
5.4 KiB
Go
180 lines
5.4 KiB
Go
// +build !circleci
|
|
|
|
/*
|
|
DESCRIPTION
|
|
A filter that detects motion and discards frames without motion. The
|
|
filter uses a K-Nearest Neighbours (KNN) to determine what is
|
|
background and what is foreground.
|
|
|
|
AUTHORS
|
|
Ella Pietraroia <ella@ausocean.org>
|
|
|
|
LICENSE
|
|
KNN.go is Copyright (C) 2019 the Australian Ocean Lab (AusOcean)
|
|
|
|
It is free software: you can redistribute it and/or modify them
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation, either version 3 of the License, or (at your
|
|
option) any later version.
|
|
|
|
It is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
in gpl.txt. If not, see http://www.gnu.org/licenses.
|
|
*/
|
|
|
|
package filter
|
|
|
|
import (
|
|
"fmt"
|
|
"image"
|
|
"io"
|
|
|
|
"bitbucket.org/ausocean/av/revid/config"
|
|
"gocv.io/x/gocv"
|
|
)
|
|
|
|
const (
|
|
defaultKNNMinArea = 25.0
|
|
defaultKNNThreshold = 300
|
|
defaultKNNHistory = 300
|
|
defaultKNNKernel = 4
|
|
defaultKNNDownscaling = 2
|
|
defaultKNNInterval = 1
|
|
)
|
|
|
|
// KNN is a filter that provides basic motion detection. KNN is short for
|
|
// K-Nearest Neighbours method.
|
|
type KNN struct {
|
|
debugging debugWindows
|
|
dst io.WriteCloser // Destination to which motion containing frames go.
|
|
area float64 // The minimum area that a contour can be found in.
|
|
bs *gocv.BackgroundSubtractorKNN // Uses the KNN algorithm to find the difference between the current and background frame.
|
|
knl gocv.Mat // Matrix that is used for calculations.
|
|
hold [][]byte // Will hold all frames up to hf (so only every hf frame is motion detected).
|
|
hf int // The number of frames to be held.
|
|
hfCount int // Counter for the hold array.
|
|
scale float64 // The factor that frames will be downscaled by for motion detection.
|
|
}
|
|
|
|
// NewKNN returns a pointer to a new KNN filter struct.
|
|
func NewKNN(dst io.WriteCloser, c config.Config) *KNN {
|
|
// Validate parameters.
|
|
if c.MotionMinArea <= 0 {
|
|
c.LogInvalidField("MotionMinArea", defaultKNNMinArea)
|
|
c.MotionMinArea = defaultKNNMinArea
|
|
}
|
|
if c.MotionThreshold <= 0 {
|
|
c.LogInvalidField("MotionThreshold", defaultKNNThreshold)
|
|
c.MotionThreshold = defaultKNNThreshold
|
|
}
|
|
if c.MotionHistory == 0 {
|
|
c.LogInvalidField("MotionHistory", defaultKNNHistory)
|
|
c.MotionHistory = defaultKNNHistory
|
|
}
|
|
if c.MotionDownscaling <= 0 {
|
|
c.LogInvalidField("MotionDownscaling", defaultKNNDownscaling)
|
|
c.MotionDownscaling = defaultKNNDownscaling
|
|
}
|
|
if c.MotionInterval <= 0 {
|
|
c.LogInvalidField("MotionInterval", defaultKNNInterval)
|
|
c.MotionInterval = defaultKNNInterval
|
|
}
|
|
if c.MotionKernel <= 0 {
|
|
c.LogInvalidField("MotionKernel", defaultKNNKernel)
|
|
c.MotionKernel = defaultKNNKernel
|
|
}
|
|
|
|
bs := gocv.NewBackgroundSubtractorKNNWithParams(int(c.MotionHistory), c.MotionThreshold, false)
|
|
k := gocv.GetStructuringElement(gocv.MorphRect, image.Pt(int(c.MotionKernel), int(c.MotionKernel)))
|
|
|
|
return &KNN{
|
|
dst: dst,
|
|
area: c.MotionMinArea,
|
|
bs: &bs,
|
|
knl: k,
|
|
hold: make([][]byte, c.MotionInterval-1),
|
|
hf: c.MotionInterval,
|
|
scale: 1 / float64(c.MotionDownscaling),
|
|
debugging: newWindows("KNN"),
|
|
}
|
|
}
|
|
|
|
// Implements io.Closer.
|
|
// Close frees resources used by gocv, because it has to be done manually, due to
|
|
// it using c-go.
|
|
func (m *KNN) Close() error {
|
|
m.bs.Close()
|
|
m.knl.Close()
|
|
m.debugging.close()
|
|
return nil
|
|
}
|
|
|
|
// Implements io.Writer.
|
|
// Write applies the motion filter to the video stream. Only frames with motion
|
|
// are written to the destination encoder, frames without are discarded.
|
|
func (m *KNN) Write(f []byte) (int, error) {
|
|
if m.hfCount < (m.hf - 1) {
|
|
m.hold[m.hfCount] = f
|
|
m.hfCount++
|
|
return len(f), nil
|
|
}
|
|
m.hfCount = 0
|
|
|
|
img, err := gocv.IMDecode(f, gocv.IMReadColor)
|
|
if err != nil {
|
|
return 0, fmt.Errorf("can't decode image: %w", err)
|
|
}
|
|
defer img.Close()
|
|
|
|
imgDelta := gocv.NewMat()
|
|
defer imgDelta.Close()
|
|
|
|
// Downsize image to speed up calculations.
|
|
gocv.Resize(img, &img, image.Point{}, m.scale, m.scale, gocv.InterpolationNearestNeighbor)
|
|
|
|
// Seperate foreground and background.
|
|
m.bs.Apply(img, &imgDelta)
|
|
|
|
// Threshold imgDelta.
|
|
gocv.Threshold(imgDelta, &imgDelta, 25, 255, gocv.ThresholdBinary)
|
|
|
|
// Remove noise.
|
|
gocv.Erode(imgDelta, &imgDelta, m.knl)
|
|
gocv.Dilate(imgDelta, &imgDelta, m.knl)
|
|
|
|
// Fill small holes.
|
|
gocv.Dilate(imgDelta, &imgDelta, m.knl)
|
|
gocv.Erode(imgDelta, &imgDelta, m.knl)
|
|
|
|
// Find contours and reject ones with a small area.
|
|
var contours [][]image.Point
|
|
allContours := gocv.FindContours(imgDelta, gocv.RetrievalExternal, gocv.ChainApproxSimple)
|
|
for _, c := range allContours {
|
|
if gocv.ContourArea(c) > m.area {
|
|
contours = append(contours, c)
|
|
}
|
|
}
|
|
|
|
// Draw debug information.
|
|
m.debugging.show(img, imgDelta, len(contours) > 0, &contours)
|
|
|
|
// Don't write to destination if there is no motion.
|
|
if len(contours) == 0 {
|
|
return len(f), nil
|
|
}
|
|
|
|
// Write to destination, past 4 frames then current frame.
|
|
for i, h := range m.hold {
|
|
_, err := m.dst.Write(h)
|
|
m.hold[i] = nil
|
|
if err != nil {
|
|
return len(f), fmt.Errorf("could not write previous frames: %w", err)
|
|
}
|
|
}
|
|
return m.dst.Write(f)
|
|
}
|