mirror of https://bitbucket.org/ausocean/av.git
433 lines
11 KiB
Go
433 lines
11 KiB
Go
/*
|
|
DESCRIPTION
|
|
jpeg.go contains code ported from FFmpeg's C implementation of an RTP
|
|
JPEG-compressed Video Depacketizer following RFC 2435. See
|
|
https://ffmpeg.org/doxygen/2.6/rtpdec__jpeg_8c_source.html and
|
|
https://tools.ietf.org/html/rfc2435).
|
|
|
|
This code can be used to build JPEG images from an RTP/JPEG stream.
|
|
|
|
AUTHOR
|
|
Saxon Nelson-Milton <saxon@ausocean.org>
|
|
|
|
LICENSE
|
|
Copyright (c) 2012 Samuel Pitoiset.
|
|
|
|
This file is part of FFmpeg.
|
|
|
|
FFmpeg is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
FFmpeg is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with FFmpeg; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
package mjpeg
|
|
|
|
import (
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
)
|
|
|
|
const maxJPEG = 1000000 // 1 MB (arbitrary)
|
|
|
|
// JPEG marker codes.
|
|
const (
|
|
codeSOI = 0xd8 // Start of image.
|
|
codeDRI = 0xdd // Define restart interval.
|
|
codeDQT = 0xdb // Define quantization tables.
|
|
codeDHT = 0xc4 // Define huffman tables.
|
|
codeSOS = 0xda // Start of scan.
|
|
codeAPP0 = 0xe0 // TODO: find out what this is.
|
|
codeSOF0 = 0xc0 // Baseline
|
|
codeEOI = 0xd9 // End of image.
|
|
)
|
|
|
|
// Density units.
|
|
const (
|
|
unitNone = iota
|
|
unitPxIN // Pixels per inch.
|
|
unitPxCM // Pixels per centimeter.
|
|
)
|
|
|
|
// JFIF header fields.
|
|
const (
|
|
jfifLabel = "JFIF\000"
|
|
jfifVer = 0x0201
|
|
jfifDensityUnit = unitNone // Units for pixel density fields.
|
|
jfifXDensity = 1 // Horizontal pixel desnity.
|
|
jfifYDensity = 1 // Vertical pixel density.
|
|
jfifXThumbCnt = 0 // Horizontal pixel count of embedded thumbnail.
|
|
jfifYThumbCnt = 0 // Vertical pixel count of embedded thumbnail.
|
|
jfifHeadLen = 16 // Length of JFIF header segment excluding APP0 marker.
|
|
)
|
|
|
|
// SOF0 (start of frame) header fields.
|
|
const (
|
|
sofLen = 17 // Length of SOF0 segment excluding marker.
|
|
sofPrecision = 8 // Data precision in bits/sample.
|
|
sofNoOfComponents = 3 // Number of components (1 = grey scaled, 3 = color YcbCr or YIQ 4 = color CMYK)
|
|
)
|
|
|
|
// SOS (start of scan) header fields.
|
|
const (
|
|
sosLen = 12 // Length of SOS segment excluding marker.
|
|
sosComponentsInScan = 3 // Number of components in scan.
|
|
)
|
|
|
|
var (
|
|
errNoQTable = errors.New("no quantization table")
|
|
errReservedQ = errors.New("q value is reserved")
|
|
)
|
|
|
|
// Slices used in the creation of huffman tables.
|
|
var (
|
|
bitsDCLum = []byte{0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0}
|
|
bitsDCChr = []byte{0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0}
|
|
bitsACLum = []byte{0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d}
|
|
bitsACChr = []byte{0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77}
|
|
valDC = []byte{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
|
|
valACLum = []byte{
|
|
0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
|
|
0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
|
|
0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
|
|
0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
|
|
0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
|
|
0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
|
|
0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
|
|
0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
|
|
0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
|
|
0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
|
|
0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
|
|
0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
|
|
0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
|
|
0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
|
|
0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
|
|
0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
|
|
0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
|
|
0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
|
|
0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
|
|
0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
|
|
0xf9, 0xfa,
|
|
}
|
|
|
|
valACChr = []byte{
|
|
0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
|
|
0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
|
|
0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
|
|
0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
|
|
0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
|
|
0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
|
|
0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
|
|
0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
|
|
0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
|
|
0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
|
|
0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
|
|
0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
|
|
0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
|
|
0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
|
|
0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
|
|
0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
|
|
0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
|
|
0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
|
|
0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
|
|
0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
|
|
0xf9, 0xfa,
|
|
}
|
|
)
|
|
|
|
var defaultQuantisers = []byte{
|
|
// Luma table.
|
|
16, 11, 12, 14, 12, 10, 16, 14,
|
|
13, 14, 18, 17, 16, 19, 24, 40,
|
|
26, 24, 22, 22, 24, 49, 35, 37,
|
|
29, 40, 58, 51, 61, 60, 57, 51,
|
|
56, 55, 64, 72, 92, 78, 64, 68,
|
|
87, 69, 55, 56, 80, 109, 81, 87,
|
|
95, 98, 103, 104, 103, 62, 77, 113,
|
|
121, 112, 100, 120, 92, 101, 103, 99,
|
|
|
|
/* chroma table */
|
|
17, 18, 18, 24, 21, 24, 47, 26,
|
|
26, 47, 99, 66, 56, 66, 99, 99,
|
|
99, 99, 99, 99, 99, 99, 99, 99,
|
|
99, 99, 99, 99, 99, 99, 99, 99,
|
|
99, 99, 99, 99, 99, 99, 99, 99,
|
|
99, 99, 99, 99, 99, 99, 99, 99,
|
|
99, 99, 99, 99, 99, 99, 99, 99,
|
|
99, 99, 99, 99, 99, 99, 99, 99,
|
|
}
|
|
|
|
// Context describes a RTP/JPEG parsing context that will keep track of the current
|
|
// JPEG (held by p), and the state of the quantization tables.
|
|
type Context struct {
|
|
qTables [128][128]byte
|
|
qTablesLen [128]byte
|
|
buf *putBuffer
|
|
dst io.Writer
|
|
}
|
|
|
|
// NewContext will return a new Context with destination d.
|
|
func NewContext(d io.Writer) *Context {
|
|
return &Context{
|
|
dst: d,
|
|
buf: newPutBuffer(make([]byte, maxJPEG)),
|
|
}
|
|
}
|
|
|
|
// ParsePayload will parse an RTP/JPEG payload and append to current image.
|
|
func (c *Context) ParsePayload(p []byte, m bool) error {
|
|
b := newByteStream(p)
|
|
_ = b.get8() // Ignore type-specific flag
|
|
|
|
off := b.get24() // Fragment offset.
|
|
t := b.get8() // Type.
|
|
q := b.get8() // Quantization value.
|
|
width := b.get8() // Picture width.
|
|
height := b.get8() // Picture height.
|
|
|
|
var dri int // Restart interval.
|
|
|
|
if t&0x40 != 0 {
|
|
dri = b.get16()
|
|
_ = b.get16() // Ignore restart count.
|
|
t &= ^0x40
|
|
}
|
|
|
|
if t > 1 {
|
|
panic("unimplemented RTP/JPEG type")
|
|
}
|
|
|
|
// Parse quantization table if our offset is 0.
|
|
if off == 0 {
|
|
var qTable []byte
|
|
var qLen int
|
|
|
|
if q > 127 {
|
|
_ = b.get8() // Ignore first byte (reserved for future use).
|
|
prec := b.get8() // The size of coefficients.
|
|
qLen = b.get16() // The length of the quantization table.
|
|
|
|
if prec != 0 {
|
|
panic("unsupported precision")
|
|
}
|
|
|
|
if qLen > 0 {
|
|
qTable = b.getBuf(qLen)
|
|
|
|
if q < 255 && c.qTablesLen[q-128] == 0 && qLen <= 128 {
|
|
copy(c.qTables[q-128][:], qTable)
|
|
c.qTablesLen[q-128] = byte(qLen)
|
|
}
|
|
} else {
|
|
if q == 255 {
|
|
return errNoQTable
|
|
}
|
|
|
|
if c.qTablesLen[q-128] == 0 {
|
|
return fmt.Errorf("no quantization tables known for q %d yet", q)
|
|
}
|
|
|
|
qTable = c.qTables[q-128][:]
|
|
qLen = int(c.qTablesLen[q-128])
|
|
}
|
|
} else { // q <= 127
|
|
if q == 0 || q > 99 {
|
|
return errReservedQ
|
|
}
|
|
qTable = defaultQTable(q)
|
|
qLen = len(qTable)
|
|
}
|
|
|
|
c.buf.reset()
|
|
|
|
writeHeader(c.buf, t, width, height, qLen/64, dri, qTable)
|
|
}
|
|
|
|
if c.buf.len == 0 {
|
|
// Must have missed start of frame? So ignore and wait for start.
|
|
return nil
|
|
}
|
|
|
|
// TODO: check that timestamp is consistent
|
|
// This will need expansion to RTP package to create Timestamp parsing func.
|
|
|
|
// TODO: could also check offset with how many bytes we currently have
|
|
// to determine if there are missing frames.
|
|
|
|
// Write frame data
|
|
err := b.writeTo(c.buf, b.remaining())
|
|
if err != nil {
|
|
return fmt.Errorf("could not write remaining frame data to output buffer: %w", err)
|
|
}
|
|
|
|
if m {
|
|
// End of image marker.
|
|
mark(c.buf, codeEOI)
|
|
|
|
_, err = c.buf.writeTo(c.dst)
|
|
if err != nil {
|
|
return fmt.Errorf("could not write JPEG to dst: %w", err)
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// writeHeader writes a JPEG header to the writer w.
|
|
func writeHeader(p *putBuffer, _type, width, height, nbqTab, dri int, qtable []byte) {
|
|
width <<= 3
|
|
height <<= 3
|
|
|
|
// Indicate start of image.
|
|
mark(p, codeSOI)
|
|
|
|
// Write JFIF header.
|
|
mark(p, codeAPP0)
|
|
p.put16(jfifHeadLen)
|
|
p.putBytes([]byte(jfifLabel))
|
|
p.put16(jfifVer)
|
|
p.put8(jfifDensityUnit)
|
|
p.put16(jfifXDensity)
|
|
p.put16(jfifYDensity)
|
|
p.put8(jfifXThumbCnt)
|
|
p.put8(jfifYThumbCnt)
|
|
|
|
// If we want to define restart interval then write that.
|
|
if dri != 0 {
|
|
mark(p, codeDRI)
|
|
p.put16(4)
|
|
p.put16(uint16(dri))
|
|
}
|
|
|
|
// Define quantization tables.
|
|
mark(p, codeDQT)
|
|
|
|
// Calculate table size and create slice for table.
|
|
ts := 2 + nbqTab*(1+64)
|
|
p.put16(uint16(ts))
|
|
|
|
for i := 0; i < nbqTab; i++ {
|
|
p.put8(uint8(i))
|
|
p.putBytes(qtable[64*i : (64*i)+64])
|
|
}
|
|
|
|
// Define huffman table.
|
|
mark(p, codeDHT)
|
|
lenIdx := p.len
|
|
p.put16(0)
|
|
writeHuffman(p, 0, 0, bitsDCLum, valDC)
|
|
writeHuffman(p, 0, 1, bitsDCChr, valDC)
|
|
writeHuffman(p, 1, 0, bitsACLum, valACLum)
|
|
writeHuffman(p, 1, 1, bitsACChr, valACChr)
|
|
p.put16At(uint16(p.len-lenIdx), lenIdx)
|
|
|
|
// Start of frame.
|
|
mark(p, codeSOF0)
|
|
|
|
// Derive sample type.
|
|
sample := 1
|
|
if _type != 0 {
|
|
sample = 2
|
|
}
|
|
|
|
// Derive matrix number.
|
|
mtxNo := 0
|
|
if nbqTab == 2 {
|
|
mtxNo = 1
|
|
}
|
|
|
|
p.put16(sofLen)
|
|
p.put8(sofPrecision)
|
|
p.put16(uint16(height))
|
|
p.put16(uint16(width))
|
|
p.put8(sofNoOfComponents)
|
|
|
|
// TODO: find meaning of these fields.
|
|
p.put8(1)
|
|
p.put8(uint8((2 << 4) | sample))
|
|
p.put8(0)
|
|
p.put8(2)
|
|
p.put8(1<<4 | 1)
|
|
p.put8(uint8(mtxNo))
|
|
p.put8(3)
|
|
p.put8(1<<4 | 1)
|
|
p.put8(uint8(mtxNo))
|
|
|
|
// Write start of scan.
|
|
mark(p, codeSOS)
|
|
p.put16(sosLen)
|
|
p.put8(sosComponentsInScan)
|
|
|
|
// TODO: find out what remaining fields are.
|
|
p.put8(1)
|
|
p.put8(0)
|
|
p.put8(2)
|
|
p.put8(17)
|
|
p.put8(3)
|
|
p.put8(17)
|
|
p.put8(0)
|
|
p.put8(63)
|
|
p.put8(0)
|
|
}
|
|
|
|
// mark writes a marker with code c to the putBuffer p.
|
|
func mark(p *putBuffer, c byte) {
|
|
p.put8(0xff)
|
|
p.put8(c)
|
|
}
|
|
|
|
// writeHuffman write a JPEG huffman table to w.
|
|
func writeHuffman(p *putBuffer, class, id int, bits, values []byte) {
|
|
p.put8(uint8(class<<4 | id))
|
|
|
|
var n int
|
|
for i := 1; i <= 16; i++ {
|
|
n += int(bits[i])
|
|
}
|
|
|
|
p.putBytes(bits[1:17])
|
|
p.putBytes(values[0:n])
|
|
}
|
|
|
|
// defaultQTable returns a default quantization table.
|
|
func defaultQTable(q int) []byte {
|
|
f := clip(q, q, 99)
|
|
const tabLen = 128
|
|
tab := make([]byte, tabLen)
|
|
|
|
if q < 50 {
|
|
q = 5000 / f
|
|
} else {
|
|
q = 200 - f*2
|
|
}
|
|
|
|
for i := 0; i < tabLen; i++ {
|
|
v := (int(defaultQuantisers[i])*q + 50) / 100
|
|
v = clip(v, 1, 255)
|
|
tab[i] = byte(v)
|
|
}
|
|
return tab
|
|
}
|
|
|
|
// clip clips the value v to the bounds defined by min and max.
|
|
func clip(v, min, max int) int {
|
|
if v < min {
|
|
return min
|
|
}
|
|
|
|
if v > max {
|
|
return max
|
|
}
|
|
|
|
return v
|
|
}
|