av/codec/adpcm/adpcm.go

372 lines
10 KiB
Go

/*
NAME
adpcm.go
AUTHOR
Trek Hopton <trek@ausocean.org>
LICENSE
adpcm.go is Copyright (C) 2018 the Australian Ocean Lab (AusOcean)
It is free software: you can redistribute it and/or modify them
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License in gpl.txt.
If not, see [GNU licenses](http://www.gnu.org/licenses).
*/
/*
Original IMA/DVI ADPCM specification: (http://www.cs.columbia.edu/~hgs/audio/dvi/IMA_ADPCM.pdf).
Reference algorithms for ADPCM compression and decompression are in part 6.
*/
// Package adpcm provides encoder and decoder structs to encode and decode PCM to and from ADPCM.
package adpcm
import (
"bytes"
"encoding/binary"
"fmt"
"math"
)
const (
byteDepth = 2 // TODO(Trek): make configurable.
initSamps = 2
initBytes = initSamps * byteDepth
headBytes = 4
sampsPerEnc = 2
bytesPerEnc = sampsPerEnc * byteDepth
compFact = 4
)
// encoder is used to encode to ADPCM from PCM data.
type encoder struct {
// dst is the output buffer that implements io.writer and io.bytewriter, ie. where the encoded ADPCM data is written to.
dst *bytes.Buffer
// est and index hold state that persists between calls to encodeSample and calcHead.
est int16
index int16
}
// decoder is used to decode from ADPCM to PCM data.
type decoder struct {
// dst is the output buffer that implements io.writer and io.bytewriter, ie. where the decoded PCM data is written to.
dst *bytes.Buffer
// est, index, and step hold state that persists between calls to decodeSample.
est int16
index int16
step int16
}
// PcmBS is the size of the blocks that an encoder uses.
// 'encodeBlock' will encode PcmBS bytes at a time and the output will be AdpcmBS bytes long.
const PcmBS = 1010
// AdpcmBS is the size of the blocks that a decoder uses.
// 'decodeBlock' will decode AdpcmBS bytes at a time and the output will be PcmBS bytes long.
const AdpcmBS = 256
// Table of index changes (see spec).
var indexTable = []int16{
-1, -1, -1, -1, 2, 4, 6, 8,
-1, -1, -1, -1, 2, 4, 6, 8,
}
// Quantize step size table (see spec).
var stepTable = []int16{
7, 8, 9, 10, 11, 12, 13, 14,
16, 17, 19, 21, 23, 25, 28, 31,
34, 37, 41, 45, 50, 55, 60, 66,
73, 80, 88, 97, 107, 118, 130, 143,
157, 173, 190, 209, 230, 253, 279, 307,
337, 371, 408, 449, 494, 544, 598, 658,
724, 796, 876, 963, 1060, 1166, 1282, 1411,
1552, 1707, 1878, 2066, 2272, 2499, 2749, 3024,
3327, 3660, 4026, 4428, 4871, 5358, 5894, 6484,
7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794,
32767,
}
// NewEncoder retuns a new ADPCM encoder.
func NewEncoder(dst *bytes.Buffer) *encoder {
e := encoder{
dst: dst,
}
return &e
}
// NewDecoder retuns a new ADPCM decoder.
func NewDecoder(dst *bytes.Buffer) *decoder {
d := decoder{
dst: dst,
}
return &d
}
// encodeSample takes a single 16 bit PCM sample and
// returns a byte of which the last 4 bits are an encoded ADPCM nibble.
func (e *encoder) encodeSample(sample int16) byte {
// Find difference between the sample and the previous estimation.
delta := capAdd16(sample, -e.est)
// Create and set sign bit for nibble and find absolute value of difference.
var nib byte
if delta < 0 {
nib = 8
delta = -delta
}
step := stepTable[e.index]
diff := step >> 3
var mask byte = 4
for i := 0; i < 3; i++ {
if delta > step {
nib |= mask
delta = capAdd16(delta, -step)
diff = capAdd16(diff, step)
}
mask >>= 1
step >>= 1
}
if nib&8 != 0 {
diff = -diff
}
// Adjust estimated sample based on calculated difference.
e.est = capAdd16(e.est, diff)
e.index += indexTable[nib&7]
// Check for underflow and overflow.
if e.index < 0 {
e.index = 0
} else if e.index > int16(len(stepTable)-1) {
e.index = int16(len(stepTable) - 1)
}
return nib
}
// decodeSample takes a byte, the last 4 bits of which contain a single
// 4 bit ADPCM nibble, and returns a 16 bit decoded PCM sample.
func (d *decoder) decodeSample(nibble byte) int16 {
// Calculate difference.
var diff int16
if nibble&4 != 0 {
diff = capAdd16(diff, d.step)
}
if nibble&2 != 0 {
diff = capAdd16(diff, d.step>>1)
}
if nibble&1 != 0 {
diff = capAdd16(diff, d.step>>2)
}
diff = capAdd16(diff, d.step>>3)
// Account for sign bit.
if nibble&8 != 0 {
diff = -diff
}
// Adjust estimated sample based on calculated difference.
d.est = capAdd16(d.est, diff)
// Adjust index into step size lookup table using nibble.
d.index += indexTable[nibble]
// Check for overflow and underflow.
if d.index < 0 {
d.index = 0
} else if d.index > int16(len(stepTable)-1) {
d.index = int16(len(stepTable) - 1)
}
// Find new quantizer step size.
d.step = stepTable[d.index]
return d.est
}
// capAdd16 adds two int16s together and caps at max/min int16 instead of overflowing
func capAdd16(a, b int16) int16 {
c := int32(a) + int32(b)
switch {
case c < math.MinInt16:
return math.MinInt16
case c > math.MaxInt16:
return math.MaxInt16
default:
return int16(c)
}
}
// calcHead sets the state for the encoder by running the first sample through
// the encoder, and writing the first sample to the encoder's io.Writer (dst).
// It returns the number of bytes written to the encoder's io.Writer (dst) along with any errors.
func (e *encoder) calcHead(sample []byte, pad bool) (int, error) {
// Check that we are given 1 sample.
if len(sample) != byteDepth {
return 0, fmt.Errorf("length of given byte array is: %v, expected: %v", len(sample), byteDepth)
}
n, err := e.dst.Write(sample)
if err != nil {
return n, err
}
err = e.dst.WriteByte(byte(int16(e.index)))
if err != nil {
return n, err
}
n++
if pad {
err = e.dst.WriteByte(0x01)
} else {
err = e.dst.WriteByte(0x00)
}
if err != nil {
return n, err
}
n++
return n, nil
}
// init initializes the encoder's estimation to the first uncompressed sample and the index to
// point to a suitable quantizer step size.
// The suitable step size is the closest step size in the stepTable to half the absolute difference of the first two samples.
func (e *encoder) init(samps []byte) {
int1 := int16(binary.LittleEndian.Uint16(samps[:byteDepth]))
int2 := int16(binary.LittleEndian.Uint16(samps[byteDepth:initBytes]))
e.est = int1
halfDiff := math.Abs(math.Abs(float64(int1)) - math.Abs(float64(int2))/2.0)
closest := math.Abs(float64(stepTable[0]) - halfDiff)
var cInd int16
for i, step := range stepTable {
if math.Abs(float64(step)-halfDiff) < closest {
closest = math.Abs(float64(step) - halfDiff)
cInd = int16(i)
}
}
e.index = cInd
}
// Write takes a slice of bytes of arbitrary length representing pcm and encodes it into adpcm.
// It writes its output to the encoder's dst.
// The number of bytes written out is returned along with any error that occured.
func (e *encoder) Write(inPcm []byte) (int, error) {
// Check that pcm has enough data to initialize decoder.
pcmLen := len(inPcm)
if pcmLen < initBytes {
return 0, fmt.Errorf("length of given byte array must be >= %v", initBytes)
}
// Determine if there will be a byte that won't contain two full nibbles and will need padding.
pad := false
if (pcmLen-byteDepth)%bytesPerEnc != 0 {
pad = true
}
e.init(inPcm[:initBytes])
n, err := e.calcHead(inPcm[:byteDepth], pad)
if err != nil {
return n, err
}
// Skip the first sample and start at the end of the first two samples, then every two samples encode them into a byte of adpcm.
for i := byteDepth; i+bytesPerEnc-1 < pcmLen; i += bytesPerEnc {
nib1 := e.encodeSample(int16(binary.LittleEndian.Uint16(inPcm[i : i+byteDepth])))
nib2 := e.encodeSample(int16(binary.LittleEndian.Uint16(inPcm[i+byteDepth : i+bytesPerEnc])))
err = e.dst.WriteByte(byte((nib2 << 4) | nib1))
if err != nil {
return n, err
}
n++
}
// If we've reached the end of the pcm data and there's a sample left over,
// compress it to a nibble and leave the first half of the byte padded with 0s.
if pad {
nib := e.encodeSample(int16(binary.LittleEndian.Uint16(inPcm[pcmLen-byteDepth : pcmLen])))
err = e.dst.WriteByte(nib)
if err != nil {
return n, err
}
n++
}
return n, nil
}
// Write takes a slice of bytes of arbitrary length representing adpcm and decodes it into pcm.
// It writes its output to the decoder's dst.
// The number of bytes written out is returned along with any error that occured.
func (d *decoder) Write(chunk []byte) (int, error) {
// Initialize decoder with first 4 bytes of the chunk.
d.est = int16(binary.LittleEndian.Uint16(chunk[:byteDepth]))
d.index = int16(chunk[byteDepth])
d.step = stepTable[d.index]
n, err := d.dst.Write(chunk[:byteDepth])
if err != nil {
return n, err
}
// For each byte, seperate it into two nibbles (each nibble is a compressed sample),
// then decode each nibble and output the resulting 16-bit samples.
// If padding flag is true (Adpcm[3]), only decode up until the last byte, then decode that separately.
for i := headBytes; i < len(chunk)-int(chunk[3]); i++ {
twoNibs := chunk[i]
nib2 := byte(twoNibs >> 4)
nib1 := byte((nib2 << 4) ^ twoNibs)
firstBytes := make([]byte, byteDepth)
binary.LittleEndian.PutUint16(firstBytes, uint16(d.decodeSample(nib1)))
_n, err := d.dst.Write(firstBytes)
n += _n
if err != nil {
return n, err
}
secondBytes := make([]byte, byteDepth)
binary.LittleEndian.PutUint16(secondBytes, uint16(d.decodeSample(nib2)))
_n, err = d.dst.Write(secondBytes)
n += _n
if err != nil {
return n, err
}
}
if chunk[3] == 0x01 {
padNib := chunk[len(chunk)-1]
samp := make([]byte, byteDepth)
binary.LittleEndian.PutUint16(samp, uint16(d.decodeSample(padNib)))
_n, err := d.dst.Write(samp)
n += _n
if err != nil {
return n, err
}
}
return n, nil
}
// BytesOutput will return the number of adpcm bytes that will be generated for the given pcm data byte size.
func BytesOutput(pcm int) int {
// For X pcm bytes, 1 sample is left uncompressed, the rest is compressed by a factor of 4
// and a start index and padding-flag byte are added.
// Also if there are an even number of samples, there will be half a byte of padding added to the last byte.
if pcm%bytesPerEnc == 0 {
return (pcm-byteDepth)/compFact + headBytes + 1
}
return (pcm-byteDepth)/compFact + headBytes
}