av/rtmp/amf.go

549 lines
11 KiB
Go

/*
NAME
amf.go
DESCRIPTION
RMTP encoding/decoding functions.
AUTHORS
Saxon Nelson-Milton <saxon@ausocean.org>
Dan Kortschak <dan@ausocean.org>
Jake Lane <jake@ausocean.org>
Alan Noble <alan@ausocean.org>
LICENSE
amf.go is Copyright (C) 2017-2019 the Australian Ocean Lab (AusOcean)
It is free software: you can redistribute it and/or modify them
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with revid in gpl.txt. If not, see http://www.gnu.org/licenses.
Derived from librtmp under the GNU Lesser General Public License 2.1
Copyright (C) 2005-2008 Team XBMC http://www.xbmc.org
Copyright (C) 2008-2009 Andrej Stepanchuk
Copyright (C) 2009-2010 Howard Chu
*/
package rtmp
import (
"encoding/binary"
"math"
)
const (
amfNumber = iota
amfBoolean
amfString
amfObject
amfMovieClip // reserved, not implemented
amfNull
amfUndefined
amfReference
amfEcmaArray
amfObjectEnd
amfStrictArray
amfDate
amfLongSring
amfUnsupported
amfRecordset // reserved, not implemented
amfXmlDoc
amfTypedObject
amfAvmplus // reserved, not implemented
amfInvalid = 0xff
)
type AMF struct {
props []AMFProperty
}
type AMFProperty struct {
name string
atype AMFDataType
vu vu
UTCoffset int16
}
type vu struct {
number float64
aval string
obj AMF
}
type AMFDataType int32
var (
amfObjInvalid AMF
amfPropInvalid = AMFProperty{atype: amfInvalid}
)
func amfDecodeInt16(data []byte) uint16 {
return uint16(binary.BigEndian.Uint16(data))
}
func amfDecodeInt24(data []byte) uint32 {
return uint32(data[0])<<16 | uint32(data[1])<<8 | uint32(data[2])
// return uint16(data[0])<<8 | uint16(data[1])
}
func amfDecodeInt32(data []byte) uint32 {
return uint32(binary.BigEndian.Uint32(data))
}
func amfDecodeString(data []byte) string {
n := amfDecodeInt16(data)
return string(data[2 : 2+n])
}
func amfDecodeLongString(data []byte) string {
n := amfDecodeInt32(data)
return string(data[2 : 2+n])
}
func amfDecodeNumber(data []byte) float64 {
return math.Float64frombits(binary.BigEndian.Uint64(data))
}
func amfDecodeBoolean(data []byte) bool {
return data[0] != 0
}
func amfEncodeInt24(dst []byte, val int32) []byte {
if len(dst) < 3 {
return nil
}
dst[0] = byte(val >> 16)
dst[1] = byte(val >> 8)
dst[2] = byte(val)
if len(dst) == 3 {
return nil
}
return dst[3:]
}
func amfEncodeInt32(dst []byte, val int32) []byte {
if len(dst) < 4 {
return nil
}
binary.BigEndian.PutUint32(dst, uint32(val))
if len(dst) == 4 {
return nil
}
return dst[4:]
}
func amfEncodeString(dst []byte, val string) []byte {
const typeSize = 1
if len(val) < 65536 && len(val)+typeSize+binary.Size(int16(0)) > len(dst) {
return nil
}
if len(val)+typeSize+binary.Size(int32(0)) > len(dst) {
return nil
}
if len(val) < 65536 {
dst[0] = amfString
dst = dst[1:]
binary.BigEndian.PutUint16(dst[:2], uint16(len(val)))
dst = dst[2:]
copy(dst, val)
if len(dst) == len(val) {
return nil
}
return dst[len(val):]
}
dst[0] = amfLongSring
dst = dst[1:]
binary.BigEndian.PutUint32(dst[:4], uint32(len(val)))
dst = dst[4:]
copy(dst, val)
if len(dst) == len(val) {
return nil
}
return dst[len(val):]
}
func amfEncodeNumber(dst []byte, val float64) []byte {
if len(dst) < 9 {
return nil
}
dst[0] = amfNumber
dst = dst[1:]
binary.BigEndian.PutUint64(dst, math.Float64bits(val))
return dst[8:]
}
func amfEncodeBoolean(dst []byte, val bool) []byte {
if len(dst) < 2 {
return nil
}
dst[0] = amfBoolean
if val {
dst[1] = 1
}
if len(dst) == 2 {
return nil
}
return dst[2:]
}
func amfEncodeNamedString(dst []byte, key, val string) []byte {
if 2+len(key) > len(dst) {
return nil
}
binary.BigEndian.PutUint16(dst[:2], uint16(len(key)))
dst = dst[2:]
copy(dst, key)
if len(key) == len(dst) {
return nil
}
return amfEncodeString(dst[len(key):], val)
}
func amfEncodeNamedNumber(dst []byte, key string, val float64) []byte {
if 2+len(key) > len(dst) {
return nil
}
binary.BigEndian.PutUint16(dst[:2], uint16(len(key)))
dst = dst[2:]
copy(dst, key)
if len(key) == len(dst) {
return nil
}
return amfEncodeNumber(dst[len(key):], val)
}
func amfEncodeNamedBoolean(dst []byte, key string, val bool) []byte {
if 2+len(key) > len(dst) {
return nil
}
binary.BigEndian.PutUint16(dst[:2], uint16(len(key)))
dst = dst[2:]
copy(dst, key)
if len(key) == len(dst) {
return nil
}
return amfEncodeBoolean(dst[len(key):], val)
}
func amfPropSetName(prop *AMFProperty, name string) {
prop.name = name
}
func amfPropGetNumber(prop *AMFProperty) float64 {
return prop.vu.number
}
func amfPropGetString(prop *AMFProperty) string {
if prop.atype == amfString {
return prop.vu.aval
}
return ""
}
func amfPropGetObject(prop *AMFProperty, a *AMF) {
if prop.atype == amfObject {
*a = prop.vu.obj
} else {
*a = amfObjInvalid
}
}
func amfPropEncode(p *AMFProperty, dst []byte) []byte {
if p.atype == amfInvalid {
return nil
}
if p.atype != amfNull && len(p.name)+2+1 >= len(dst) {
return nil
}
if p.atype != amfNull && len(p.name) != 0 {
binary.BigEndian.PutUint16(dst[:2], uint16(len(p.name)))
dst = dst[2:]
copy(dst, p.name)
dst = dst[len(p.name):]
}
switch p.atype {
case amfNumber:
dst = amfEncodeNumber(dst, p.vu.number)
case amfBoolean:
dst = amfEncodeBoolean(dst, p.vu.number != 0)
case amfString:
dst = amfEncodeString(dst, p.vu.aval)
case amfNull:
if len(dst) < 2 {
return nil
}
dst[0] = amfNull
dst = dst[1:]
case amfObject:
dst = amfEncode(&p.vu.obj, dst)
case amfEcmaArray:
dst = amfEncodeEcmaArray(&p.vu.obj, dst)
case amfStrictArray:
dst = amfEncodeArray(&p.vu.obj, dst)
default:
// ??? log.Println("amfPropEncode: invalid type!")
dst = nil
}
return dst
}
func amfProDecode(prop *AMFProperty, data []byte, bDecodeName int32) int32 {
prop.name = ""
nOriginalSize := len(data)
if len(data) == 0 {
// TODO use new logger here
// RTMLog(RTMLOGDEBUG, "%s: Empty buffer/no buffer pointer!", __FUNCTION__);
return -1
}
if bDecodeName != 0 && len(data) < 4 {
// at least name (length + at least 1 byte) and 1 byte of data
// TODO use new logger here
// RTMLog(RTMLOGDEBUG, "%s: Not enough data for decoding with name, less than 4 bytes!",__FUNCTION__);
return -1
}
if bDecodeName != 0 {
nNameSize := amfDecodeInt16(data[:2])
if int(nNameSize) > len(data)-2 {
// TODO use new logger here
//RTMLog(RTMLOGDEBUG, "%s: Name size out of range: namesize (%d) > len (%d) - 2",__FUNCTION__, nNameSize, nSize);
return -1
}
prop.name = amfDecodeString(data)
data = data[2+nNameSize:]
}
if len(data) == 0 {
return -1
}
prop.atype = AMFDataType(data[0])
data = data[1:]
var nRes int32
switch prop.atype {
case amfNumber:
if len(data) < 8 {
return -1
}
prop.vu.number = amfDecodeNumber(data[:8])
data = data[8:]
case amfBoolean:
panic("amfBoolean not supported")
case amfString:
nStringSize := amfDecodeInt16(data[:2])
if len(data) < int(nStringSize+2) {
return -1
}
prop.vu.aval = amfDecodeString(data)
data = data[2+nStringSize:]
case amfObject:
nRes := amfDecode(&prop.vu.obj, data, 1)
if nRes == -1 {
return -1
}
data = data[nRes:]
case amfMovieClip:
// TODO use new logger here
// ??? log.Println("AMFProDecode: MAF_MOVIECLIP reserved!")
//RTMLog(RTMLOGERROR, "amfMovieClip reserved!");
return -1
case amfNull, amfUndefined, amfUnsupported:
prop.atype = amfNull
case amfReference:
// TODO use new logger here
// ??? log.Println("AMFProDecode: amfReference not supported!")
//RTMLog(RTMLOGERROR, "amfReference not supported!");
return -1
case amfEcmaArray:
// next comes the rest, mixed array has a final 0x000009 mark and names, so its an object
data = data[4:]
nRes = amfDecode(&prop.vu.obj, data, 1)
if nRes == -1 {
return -1
}
data = data[nRes:]
case amfObjectEnd:
return -1
case amfStrictArray:
panic("amfStrictArray not supported")
case amfDate:
panic("amfDate not supported")
case amfLongSring, amfXmlDoc:
panic("amfLongSring, amfXmlDoc not supported")
case amfRecordset:
// TODO use new logger here
// ??? log.Println("AMFProDecode: amfRecordset reserved!")
//RTMLog(RTMLOGERROR, "amfRecordset reserved!");
return -1
case amfTypedObject:
// TODO use new logger here
// RTMLog(RTMLOGERROR, "amfTyped_object not supported!")
return -1
case amfAvmplus:
panic("amfAvmplus not supported")
default:
// TODO use new logger here
//RTMLog(RTMLOGDEBUG, "%s - unknown datatype 0x%02x, @%p", __FUNCTION__,
//prop.atype, pBuffer - 1);
return -1
}
return int32(nOriginalSize - len(data))
}
func amfPropReset(prop *AMFProperty) {
if prop.atype == amfObject || prop.atype == amfEcmaArray ||
prop.atype == amfStrictArray {
amfReset(&prop.vu.obj)
} else {
prop.vu.aval = ""
}
prop.atype = amfInvalid
}
func amfEncode(a *AMF, dst []byte) []byte {
if len(dst) < 5 {
return nil
}
dst[0] = amfObject
dst = dst[1:]
for i := 0; i < len(a.props); i++ {
dst = amfPropEncode(&a.props[i], dst)
if dst == nil {
// ??? log.Println("amfEncode: failed to encode property in index")
break
}
}
if len(dst) < 4 {
return nil
}
return amfEncodeInt24(dst, amfObjectEnd)
}
func amfEncodeEcmaArray(a *AMF, dst []byte) []byte {
if len(dst) < 5 {
return nil
}
dst[0] = amfEcmaArray
dst = dst[1:]
binary.BigEndian.PutUint32(dst[:4], uint32(len(a.props)))
dst = dst[4:]
for i := 0; i < len(a.props); i++ {
dst = amfPropEncode(&a.props[i], dst)
if dst == nil {
// ??? log.Println("amfEncodeEcmaArray: failed to encode property!")
break
}
}
if len(dst) < 4 {
return nil
}
return amfEncodeInt24(dst, amfObjectEnd)
}
// not used?
func amfEncodeArray(a *AMF, dst []byte) []byte {
if len(dst) < 5 {
return nil
}
dst[0] = amfStrictArray
dst = dst[1:]
binary.BigEndian.PutUint32(dst[:4], uint32(len(a.props)))
dst = dst[4:]
for i := 0; i < len(a.props); i++ {
dst = amfPropEncode(&a.props[i], dst)
if dst == nil {
// ??? log.Println("amfEncodeArray: failed to encode property!")
break
}
}
return dst
}
func amfDecode(a *AMF, data []byte, bDecodeName int32) int32 {
nOriginalSize := len(data)
a.props = a.props[:0]
for len(data) != 0 {
if len(data) >= 3 && amfDecodeInt24(data[:3]) == amfObjectEnd {
data = data[3:]
break
}
var prop AMFProperty
nRes := amfProDecode(&prop, data, bDecodeName)
// nRes = int32(C.AMFProDecode(&prop, (*byte)(unsafe.Pointer(pBuffer)),
// int32(nSize), int32(bDecodeName)))
if nRes == -1 {
return -1
}
data = data[nRes:]
a.props = append(a.props, prop)
}
return int32(nOriginalSize - len(data))
}
func amfGetProp(a *AMF, name string, idx int32) *AMFProperty {
if idx >= 0 {
if idx < int32(len(a.props)) {
return &a.props[idx]
}
} else {
for i, p := range a.props {
if p.name == name {
return &a.props[i]
}
}
}
return &amfPropInvalid
}
func amfReset(a *AMF) {
for i := range a.props {
amfPropReset(&a.props[i])
}
*a = AMF{}
}