mirror of https://bitbucket.org/ausocean/av.git
278 lines
7.1 KiB
Go
278 lines
7.1 KiB
Go
/*
|
|
NAME
|
|
adpcm.go
|
|
|
|
DESCRIPTION
|
|
adpcm.go contains functions for encoding/compressing pcm into adpcm and decoding/decompressing back to pcm.
|
|
|
|
AUTHOR
|
|
Trek Hopton <trek@ausocean.org>
|
|
|
|
LICENSE
|
|
adpcm.go is Copyright (C) 2018 the Australian Ocean Lab (AusOcean)
|
|
|
|
It is free software: you can redistribute it and/or modify them
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation, either version 3 of the License, or (at your
|
|
option) any later version.
|
|
|
|
It is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License in gpl.txt.
|
|
If not, see [GNU licenses](http://www.gnu.org/licenses).
|
|
*/
|
|
|
|
/*
|
|
Original IMA/DVI ADPCM specification: (http://www.cs.columbia.edu/~hgs/audio/dvi/IMA_ADPCM.pdf).
|
|
Reference algorithms for ADPCM compression and decompression are in part 6.
|
|
*/
|
|
|
|
package adpcm
|
|
|
|
import (
|
|
"bytes"
|
|
"encoding/binary"
|
|
"fmt"
|
|
"math"
|
|
)
|
|
|
|
// Encoder is used to encode to ADPCM from PCM data.
|
|
// pred and index hold state that persists between calls to encodeSample and calcHead.
|
|
// dest is the output buffer that implements io.writer and io.bytewriter, ie. where the encoded ADPCM data is written to.
|
|
type Encoder struct {
|
|
dest *bytes.Buffer
|
|
pred int16
|
|
index int16
|
|
}
|
|
|
|
// Decoder is used to decode from ADPCM to PCM data.
|
|
// pred, index, and step hold state that persists between calls to decodeSample.
|
|
// dest is the output buffer that implements io.writer and io.bytewriter, ie. where the decoded PCM data is written to.
|
|
type Decoder struct {
|
|
dest *bytes.Buffer
|
|
pred int16
|
|
index int16
|
|
step int16
|
|
}
|
|
|
|
// table of index changes (see spec)
|
|
var indexTable = []int16{
|
|
-1, -1, -1, -1, 2, 4, 6, 8,
|
|
-1, -1, -1, -1, 2, 4, 6, 8,
|
|
}
|
|
|
|
// quantize step size table (see spec)
|
|
var stepTable = []int16{
|
|
7, 8, 9, 10, 11, 12, 13, 14,
|
|
16, 17, 19, 21, 23, 25, 28, 31,
|
|
34, 37, 41, 45, 50, 55, 60, 66,
|
|
73, 80, 88, 97, 107, 118, 130, 143,
|
|
157, 173, 190, 209, 230, 253, 279, 307,
|
|
337, 371, 408, 449, 494, 544, 598, 658,
|
|
724, 796, 876, 963, 1060, 1166, 1282, 1411,
|
|
1552, 1707, 1878, 2066, 2272, 2499, 2749, 3024,
|
|
3327, 3660, 4026, 4428, 4871, 5358, 5894, 6484,
|
|
7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
|
|
15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794,
|
|
32767,
|
|
}
|
|
|
|
// NewEncoder retuns a new ADPCM encoder.
|
|
func NewEncoder(dst *bytes.Buffer) *Encoder {
|
|
e := Encoder{
|
|
dest: dst,
|
|
}
|
|
return &e
|
|
}
|
|
|
|
// NewDecoder retuns a new ADPCM decoder.
|
|
func NewDecoder(dst *bytes.Buffer) *Decoder {
|
|
d := Decoder{
|
|
step: stepTable[0],
|
|
dest: dst,
|
|
}
|
|
return &d
|
|
}
|
|
|
|
// encodeSample takes a single 16 bit PCM sample and
|
|
// returns a byte of which the last 4 bits are an encoded ADPCM nibble
|
|
func (e *Encoder) encodeSample(sample int16) byte {
|
|
delta := sample - e.pred
|
|
|
|
var nibble byte
|
|
|
|
// set sign bit and find absolute value of difference
|
|
if delta < 0 {
|
|
nibble = 8
|
|
delta = -delta
|
|
}
|
|
|
|
step := stepTable[e.index]
|
|
diff := step >> 3
|
|
var mask byte = 4
|
|
|
|
for i := 0; i < 3; i++ {
|
|
if delta > step {
|
|
nibble |= mask
|
|
delta -= step
|
|
diff += step
|
|
}
|
|
mask >>= 1
|
|
step >>= 1
|
|
}
|
|
|
|
// adjust predicted sample based on calculated difference
|
|
if nibble&8 != 0 {
|
|
e.pred = capAdd16(e.pred, -diff)
|
|
} else {
|
|
e.pred = capAdd16(e.pred, diff)
|
|
}
|
|
|
|
// check for underflow and overflow
|
|
if e.pred < math.MinInt16 {
|
|
e.pred = math.MinInt16
|
|
} else if e.pred > math.MaxInt16 {
|
|
e.pred = math.MaxInt16
|
|
}
|
|
|
|
e.index += indexTable[nibble&7]
|
|
|
|
// check for underflow and overflow
|
|
if e.index < 0 {
|
|
e.index = 0
|
|
} else if e.index > int16(len(stepTable)-1) {
|
|
e.index = int16(len(stepTable) - 1)
|
|
}
|
|
|
|
return nibble
|
|
}
|
|
|
|
// decodeSample takes a byte, the last 4 bits of which contain a single
|
|
// 4 bit ADPCM nibble, and returns a 16 bit decoded PCM sample
|
|
func (d *Decoder) decodeSample(nibble byte) int16 {
|
|
// calculate difference
|
|
var diff int16
|
|
if nibble&4 != 0 {
|
|
diff += d.step
|
|
}
|
|
if nibble&2 != 0 {
|
|
diff += d.step >> 1
|
|
}
|
|
if nibble&1 != 0 {
|
|
diff += d.step >> 2
|
|
}
|
|
diff += d.step >> 3
|
|
|
|
// account for sign bit
|
|
if nibble&8 != 0 {
|
|
diff = -diff
|
|
}
|
|
|
|
// adjust predicted sample based on calculated difference
|
|
d.pred = capAdd16(d.pred, diff)
|
|
|
|
// adjust index into step size lookup table using nibble
|
|
d.index += indexTable[nibble]
|
|
|
|
// check for overflow and underflow
|
|
if d.index < 0 {
|
|
d.index = 0
|
|
} else if d.index > int16(len(stepTable)-1) {
|
|
d.index = int16(len(stepTable) - 1)
|
|
}
|
|
|
|
// find new quantizer step size
|
|
d.step = stepTable[d.index]
|
|
|
|
return d.pred
|
|
}
|
|
|
|
// capAdd16 adds two int16s together and caps at max/min int16 instead of overflowing
|
|
func capAdd16(a, b int16) int16 {
|
|
c := int32(a) + int32(b)
|
|
switch {
|
|
case c < math.MinInt16:
|
|
return math.MinInt16
|
|
case c > math.MaxInt16:
|
|
return math.MaxInt16
|
|
default:
|
|
return int16(c)
|
|
}
|
|
}
|
|
|
|
func (e *Encoder) calcHead(sample []byte) error {
|
|
// check that we are given 1 16-bit sample (2 bytes)
|
|
sampSize := 2
|
|
if len(sample) != sampSize {
|
|
return fmt.Errorf("length of given byte array is: %v, expected: %v", len(sample), sampSize)
|
|
}
|
|
|
|
intSample := int16(binary.LittleEndian.Uint16(sample))
|
|
e.encodeSample(intSample)
|
|
|
|
e.dest.Write(sample)
|
|
|
|
e.dest.WriteByte(byte(uint16(e.index)))
|
|
e.dest.WriteByte(byte(0x00))
|
|
return nil
|
|
}
|
|
|
|
// EncodeBlock takes a slice of 1010 bytes (505 16-bit PCM samples).
|
|
// It returns a byte slice containing encoded (compressed) ADPCM nibbles (each byte contains two nibbles).
|
|
func (e *Encoder) EncodeBlock(block []byte) error {
|
|
bSize := 1010
|
|
if len(block) != bSize {
|
|
return fmt.Errorf("unsupported block size. Given: %v, expected: %v, ie. 505 16-bit PCM samples", len(block), bSize)
|
|
}
|
|
|
|
err := e.calcHead(block[0:2])
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
for i := 2; i < len(block); i++ {
|
|
if (i+1)%4 == 0 {
|
|
sample2 := e.encodeSample(int16(binary.LittleEndian.Uint16(block[i-1 : i+1])))
|
|
sample := e.encodeSample(int16(binary.LittleEndian.Uint16(block[i+1 : i+3])))
|
|
e.dest.WriteByte(byte((sample << 4) | sample2))
|
|
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// DecodeBlock takes a slice of 256 bytes, each byte should contain two ADPCM encoded nibbles.
|
|
// It returns a byte slice containing the resulting decoded (uncompressed) 16-bit PCM samples.
|
|
func (d *Decoder) DecodeBlock(block []byte) ([]byte, error) {
|
|
bSize := 256
|
|
if len(block) != bSize {
|
|
return nil, fmt.Errorf("unsupported block size. Given: %v, expected: %v", len(block), bSize)
|
|
}
|
|
|
|
var result []byte
|
|
d.pred = int16(binary.LittleEndian.Uint16(block[0:2]))
|
|
d.index = int16(block[2])
|
|
d.step = stepTable[d.index]
|
|
result = append(result, block[0:2]...)
|
|
|
|
for i := 4; i < len(block); i++ {
|
|
originalSample := block[i]
|
|
secondSample := byte(originalSample >> 4)
|
|
firstSample := byte((secondSample << 4) ^ originalSample)
|
|
|
|
firstBytes := make([]byte, 2)
|
|
binary.LittleEndian.PutUint16(firstBytes, uint16(d.decodeSample(firstSample)))
|
|
result = append(result, firstBytes...)
|
|
|
|
secondBytes := make([]byte, 2)
|
|
binary.LittleEndian.PutUint16(secondBytes, uint16(d.decodeSample(secondSample)))
|
|
result = append(result, secondBytes...)
|
|
}
|
|
|
|
return result, nil
|
|
}
|