//go:build !nocv // +build !nocv /* DESCRIPTION Holds the turbidity sensor struct. Can evaluate 4x4 chessboard markers in an image to measure the sharpness and contrast. This implementation is based off a master thesis from Aalborg University, Turbidity measurement based on computer vision. The full paper is avaible at https://projekter.aau.dk/projekter/files/306657262/master.pdf AUTHORS Russell Stanley LICENSE Copyright (C) 2021-2022 the Australian Ocean Lab (AusOcean) It is free software: you can redistribute it and/or modify them under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License in gpl.txt. If not, see http://www.gnu.org/licenses. */ package turbidity import ( "errors" "fmt" "image" "math" "gocv.io/x/gocv" ) // TurbiditySensor is a software based turbidity sensor that uses CV to determine sharpness and constrast level // of a chessboard-like target submerged in water that can be correlated to turbidity/visibility values. type TurbiditySensor struct { template, templateCorners gocv.Mat standard, standardCorners gocv.Mat k1, k2, sobelFilterSize int scale, alpha float64 } // NewTurbiditySensor returns a new TurbiditySensor. func NewTurbiditySensor(template, standard gocv.Mat, k1, k2, sobelFilterSize int, scale, alpha float64) (*TurbiditySensor, error) { ts := new(TurbiditySensor) templateCorners := gocv.NewMat() standardCorners := gocv.NewMat() // Validate template image is not empty and has valid corners. if template.Empty() { return nil, errors.New("template image is empty") } if !gocv.FindChessboardCorners(template, image.Pt(3, 3), &templateCorners, gocv.CalibCBNormalizeImage) { return nil, errors.New("could not find corners in template image") } ts.template = template ts.templateCorners = templateCorners // Validate standard image is not empty and has valid corners. if standard.Empty() { return nil, errors.New("standard image is empty") } if !gocv.FindChessboardCorners(standard, image.Pt(3, 3), &standardCorners, gocv.CalibCBNormalizeImage) { return nil, errors.New("could not find corners in standard image") } ts.standard = standard ts.standardCorners = standardCorners ts.k1, ts.k2, ts.sobelFilterSize = k1, k2, sobelFilterSize ts.alpha, ts.scale = alpha, scale return ts, nil } // Evaluate, given a slice of images, return the sharpness and contrast scores. func (ts TurbiditySensor) Evaluate(imgs []gocv.Mat) (*Results, error) { result, err := NewResults(len(imgs)) if err != nil { return nil, fmt.Errorf("could not create results: %w", err) } for i := range imgs { marker, err := ts.transform(imgs[i]) if err != nil { return nil, fmt.Errorf("could not transform image: %d: %w", i, err) } edge := ts.sobel(marker) // Evaluate image. sharpScore, contScore, err := ts.EvaluateImage(marker, edge) if err != nil { return result, err } result.Update(sharpScore, contScore, float64(i), i) } return result, nil } // EvaluateImage will evaluate image sharpness and contrast using blocks of size k1 by k2. Return the respective scores. func (ts TurbiditySensor) EvaluateImage(img, edge gocv.Mat) (float64, float64, error) { var sharpness float64 var contrast float64 if img.Rows()%ts.k1 != 0 || img.Cols()%ts.k2 != 0 { return math.NaN(), math.NaN(), fmt.Errorf("dimensions not compatible (%v, %v)", ts.k1, ts.k2) } lStep := img.Rows() / ts.k1 kStep := img.Cols() / ts.k2 for l := 0; l < img.Rows(); l += lStep { for k := 0; k < img.Cols(); k += kStep { // Enhancement Measure Estimation (EME), provides a measure of the sharpness. sharpness += ts.evaluateBlockEME(edge, l, k, l+lStep, k+kStep) // AMEE, provides a measure of the contrast. contrast += ts.evaluateBlockAMEE(img, l, k, l+lStep, k+kStep) } } // Scale EME based on block size. sharpness = 2.0 / (float64(ts.k1 * ts.k2)) * sharpness // Scale and flip AMEE based on block size. contrast = -1.0 / (float64(ts.k1 * ts.k2)) * contrast return sharpness, contrast, nil } // minMax returns the max and min pixel values of an image block. func (ts TurbiditySensor) minMax(img gocv.Mat, xStart, yStart, xEnd, yEnd int) (float64, float64) { max := -math.MaxFloat64 min := math.MaxFloat64 for i := xStart; i < xEnd; i++ { for j := yStart; j < yEnd; j++ { value := float64(img.GetUCharAt(i, j)) // Check max/min conditions, zero values are ignoredt to avoid divison by 0. if value > max && value != 0.0 { max = value } if value < min && value != 0.0 { min = value } } } return max, min } // evaluateBlockEME will evaluate an image block and return the value to be added to the sharpness result. func (ts TurbiditySensor) evaluateBlockEME(img gocv.Mat, xStart, yStart, xEnd, yEnd int) float64 { max, min := ts.minMax(img, xStart, yStart, xEnd, yEnd) // Blocks where all pixel values are equal are ignored to avoid division by 0. if max != -math.MaxFloat64 && min != math.MaxFloat64 && max != min { return math.Log(max / min) } return 0.0 } // evaluateBlockAMEE will evaluate an image block and return the value to be added to the contrast result. func (ts TurbiditySensor) evaluateBlockAMEE(img gocv.Mat, xStart, yStart, xEnd, yEnd int) float64 { max, min := ts.minMax(img, xStart, yStart, xEnd, yEnd) // Blocks where all pixel values are equal are ignored to avoid division by 0. if max != -math.MaxFloat64 && min != math.MaxFloat64 && max != min { contrast := (max + min) / (max - min) return math.Pow(ts.alpha*(contrast), ts.alpha) * math.Log(contrast) } return 0.0 } // transform will search img for matching template. Returns the transformed image which best match the template. func (ts TurbiditySensor) transform(img gocv.Mat) (gocv.Mat, error) { out := gocv.NewMat() mask := gocv.NewMat() imgCorners := gocv.NewMat() const ( ransacThreshold = 3.0 // Maximum allowed reprojection error to treat a point pair as an inlier. maxIter = 2000 // The maximum number of RANSAC iterations. confidence = 0.995 // Confidence level, between 0 and 1. ) if img.Empty() { return out, errors.New("image is empty, cannot transform") } // Check image for corners, if non can be found corners will be set to default value. if !gocv.FindChessboardCorners(img, image.Pt(3, 3), &imgCorners, gocv.CalibCBFastCheck) { imgCorners = ts.standardCorners } // Find and apply transformation. H := gocv.FindHomography(imgCorners, &ts.templateCorners, gocv.HomograpyMethodRANSAC, ransacThreshold, &mask, maxIter, confidence) gocv.WarpPerspective(img, &out, H, image.Pt(ts.template.Rows(), ts.template.Cols())) return out, nil } // sobel will apply sobel filter to an image and return the result. func (ts TurbiditySensor) sobel(img gocv.Mat) gocv.Mat { dx := gocv.NewMat() dy := gocv.NewMat() sobel := gocv.NewMat() // Apply filter. gocv.Sobel(img, &dx, gocv.MatTypeCV64F, 0, 1, ts.sobelFilterSize, ts.scale, 0.0, gocv.BorderConstant) gocv.Sobel(img, &dy, gocv.MatTypeCV64F, 1, 0, ts.sobelFilterSize, ts.scale, 0.0, gocv.BorderConstant) // Convert to unsigned. gocv.ConvertScaleAbs(dx, &dx, 1.0, 0.0) gocv.ConvertScaleAbs(dy, &dy, 1.0, 0.0) // Add x and y components. gocv.AddWeighted(dx, 0.5, dy, 0.5, 0, &sobel) return sobel }