/* NAME pcm.go DESCRIPTION pcm.go contains functions for processing pcm. AUTHOR Trek Hopton LICENSE pcm.go is Copyright (C) 2019 the Australian Ocean Lab (AusOcean) It is free software: you can redistribute it and/or modify them under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License in gpl.txt. If not, see [GNU licenses](http://www.gnu.org/licenses). */ // Package pcm provides functions for processing and converting pcm audio. package pcm import ( "encoding/binary" "fmt" "bitbucket.org/ausocean/av/codec/adpcm" "bitbucket.org/ausocean/av/codec/codecutil" "github.com/pkg/errors" ) // SampleFormat is the format that a PCM Buffer's samples can be in. type SampleFormat int // Used to represent an unknown format. const ( Unknown SampleFormat = -1 ) // Sample formats that we use. const ( S16_LE SampleFormat = iota S32_LE // There are many more: // https://linux.die.net/man/1/arecord // https://trac.ffmpeg.org/wiki/audio%20types ) // BufferFormat contains the format for a PCM Buffer. type BufferFormat struct { SFormat SampleFormat Rate uint Channels uint } // Buffer contains a buffer of PCM data and the format that it is in. type Buffer struct { Format BufferFormat Data []byte } // DataSize takes audio attributes describing audio data and returns the size of that data. func DataSize(rate, channels, bitDepth uint, period float64, codec uint8) int { s := int(float64(channels) * float64(rate) * float64(bitDepth/8) * period) if codec == codecutil.ADPCM { s = adpcm.EncBytes(s) } return s } // Resample takes Buffer c and resamples the pcm audio data to 'rate' Hz and returns a Buffer with the resampled data. // Notes: // - Currently only downsampling is implemented and c's rate must be divisible by 'rate' or an error will occur. // - If the number of bytes in c.Data is not divisible by the decimation factor (ratioFrom), the remaining bytes will // not be included in the result. Eg. input of length 480002 downsampling 6:1 will result in output length 80000. func Resample(c Buffer, rate uint) (Buffer, error) { if c.Format.Rate == rate { return c, nil } if c.Format.Rate < 0 { return Buffer{}, fmt.Errorf("Unable to convert from: %v Hz", c.Format.Rate) } if rate < 0 { return Buffer{}, fmt.Errorf("Unable to convert to: %v Hz", rate) } // The number of bytes in a sample. var sampleLen int switch c.Format.SFormat { case S32_LE: sampleLen = int(4 * c.Format.Channels) case S16_LE: sampleLen = int(2 * c.Format.Channels) default: return Buffer{}, fmt.Errorf("Unhandled ALSA format: %v", c.Format.SFormat) } inPcmLen := len(c.Data) // Calculate sample rate ratio ratioFrom:ratioTo. rateGcd := gcd(rate, c.Format.Rate) ratioFrom := int(c.Format.Rate / rateGcd) ratioTo := int(rate / rateGcd) // ratioTo = 1 is the only number that will result in an even sampling. if ratioTo != 1 { return Buffer{}, fmt.Errorf("unhandled from:to rate ratio %v:%v: 'to' must be 1", ratioFrom, ratioTo) } newLen := inPcmLen / ratioFrom resampled := make([]byte, 0, newLen) // For each new sample to be generated, loop through the respective 'ratioFrom' samples in 'c.Data' to add them // up and average them. The result is the new sample. bAvg := make([]byte, sampleLen) for i := 0; i < newLen/sampleLen; i++ { var sum int for j := 0; j < ratioFrom; j++ { switch c.Format.SFormat { case S32_LE: sum += int(int32(binary.LittleEndian.Uint32(c.Data[(i*ratioFrom*sampleLen)+(j*sampleLen) : (i*ratioFrom*sampleLen)+((j+1)*sampleLen)]))) case S16_LE: sum += int(int16(binary.LittleEndian.Uint16(c.Data[(i*ratioFrom*sampleLen)+(j*sampleLen) : (i*ratioFrom*sampleLen)+((j+1)*sampleLen)]))) } } avg := sum / ratioFrom switch c.Format.SFormat { case S32_LE: binary.LittleEndian.PutUint32(bAvg, uint32(avg)) case S16_LE: binary.LittleEndian.PutUint16(bAvg, uint16(avg)) } resampled = append(resampled, bAvg...) } // Return a new Buffer with resampled data. return Buffer{ Format: BufferFormat{ Channels: c.Format.Channels, SFormat: c.Format.SFormat, Rate: rate, }, Data: resampled, }, nil } // StereoToMono returns raw mono audio data generated from only the left channel from // the given stereo Buffer func StereoToMono(c Buffer) (Buffer, error) { if c.Format.Channels == 1 { return c, nil } if c.Format.Channels != 2 { return Buffer{}, fmt.Errorf("Audio is not stereo or mono, it has %v channels", c.Format.Channels) } var stereoSampleBytes int switch c.Format.SFormat { case S32_LE: stereoSampleBytes = 8 case S16_LE: stereoSampleBytes = 4 default: return Buffer{}, fmt.Errorf("Unhandled sample format %v", c.Format.SFormat) } recLength := len(c.Data) mono := make([]byte, recLength/2) // Convert to mono: for each byte in the stereo recording, if it's in the first half of a stereo sample // (left channel), add it to the new mono audio data. var inc int for i := 0; i < recLength; i++ { if i%stereoSampleBytes < stereoSampleBytes/2 { mono[inc] = c.Data[i] inc++ } } // Return a new Buffer with resampled data. return Buffer{ Format: BufferFormat{ Channels: 1, SFormat: c.Format.SFormat, Rate: c.Format.Rate, }, Data: mono, }, nil } // gcd is used for calculating the greatest common divisor of two positive integers, a and b. // assumes given a and b are positive. func gcd(a, b uint) uint { for b != 0 { a, b = b, a%b } return a } // String returns the string representation of a SampleFormat. func (f SampleFormat) String() string { switch f { case S16_LE: return "S16_LE" case S32_LE: return "S32_LE" default: return "Unknown" } } // SFFromString takes a string representing a sample format and returns the corresponding SampleFormat. func SFFromString(s string) (SampleFormat, error) { switch s { case "S16_LE": return S16_LE, nil case "S32_LE": return S32_LE, nil default: return Unknown, errors.Errorf("unknown sample format (%s)", s) } }