package pcm import ( "encoding/binary" "fmt" "github.com/yobert/alsa" ) // Resample resamples pcm data (inPcm) from 'fromRate' Hz to 'toRate' Hz and returns the resulting pcm. // If an error occurs, an error will be returned along with the original audio data // - channels: number of channels // - bitDepth: number of bits in single sample // Notes: // - Input and output is assumed to be Little Endian. // - Currently only downsampling is possible and fromRate must be divisible by toRate or an error will occur. // - If the number of bytes in 'inPcm' is not divisible by the decimation factor (ratioFrom), the remaining bytes will // not be included in the result. Eg. input of length 480002 downsampling 6:1 will result in output length 80000. func Resample(inPcm []byte, fromRate, toRate, channels, bitDepth int) ([]byte, error) { if fromRate == toRate { return inPcm, nil } else if fromRate < 0 { return inPcm, fmt.Errorf("Unable to convert from: %v Hz", fromRate) } else if toRate < 0 { return inPcm, fmt.Errorf("Unable to convert to: %v Hz", toRate) } // The number of bytes in a sample. var sampleLen int switch bitDepth { case 32: sampleLen = 4 * channels case 16: sampleLen = 2 * channels default: return inPcm, fmt.Errorf("Unhandled bitDepth: %v, must be 16 or 32", bitDepth) } inPcmLen := len(inPcm) // Calculate sample rate ratio ratioFrom:ratioTo. rateGcd := gcd(toRate, fromRate) ratioFrom := fromRate / rateGcd ratioTo := toRate / rateGcd // ratioTo = 1 is the only number that will result in an even sampling. if ratioTo != 1 { return inPcm, fmt.Errorf("%v:%v is an unhandled from:to rate ratio. must be n:1 for some rate n", ratioFrom, ratioTo) } newLen := inPcmLen / ratioFrom result := make([]byte, 0, newLen) // For each new sample to be generated, loop through the respective 'ratioFrom' samples in 'inPcm' to add them // up and average them. The result is the new sample. for i := 0; i < newLen/sampleLen; i++ { var sum int for j := 0; j < ratioFrom; j++ { switch bitDepth { case 32: sum += int(int32(binary.LittleEndian.Uint32(inPcm[(i*ratioFrom*sampleLen)+(j*sampleLen) : (i*ratioFrom*sampleLen)+((j+1)*sampleLen)]))) case 16: sum += int(int16(binary.LittleEndian.Uint16(inPcm[(i*ratioFrom*sampleLen)+(j*sampleLen) : (i*ratioFrom*sampleLen)+((j+1)*sampleLen)]))) default: return inPcm, fmt.Errorf("Unhandled bitDepth: %v, must be 16 or 32", bitDepth) } } avg := sum / ratioFrom bAvg := make([]byte, sampleLen) switch bitDepth { case 32: binary.LittleEndian.PutUint32(bAvg, uint32(avg)) case 16: binary.LittleEndian.PutUint16(bAvg, uint16(avg)) } result = append(result, bAvg...) } return result, nil } // StereoToMono returns raw mono audio data generated from only the left channel from // the given stereo recording (ALSA buffer) // if an error occurs, an error will be returned along with the original stereo data. func StereoToMono(stereoBuf alsa.Buffer) ([]byte, error) { bufChannels := stereoBuf.Format.Channels if bufChannels == 1 { return stereoBuf.Data, nil } else if bufChannels != 2 { return stereoBuf.Data, fmt.Errorf("Audio is not stereo or mono, it has %v channels", bufChannels) } var stereoSampleBytes int switch stereoBuf.Format.SampleFormat { case alsa.S32_LE: stereoSampleBytes = 8 case alsa.S16_LE: stereoSampleBytes = 4 default: return stereoBuf.Data, fmt.Errorf("Unhandled ALSA format %v", stereoBuf.Format.SampleFormat) } recLength := len(stereoBuf.Data) mono := make([]byte, recLength/2) // Convert to mono: for each byte in the stereo recording, if it's in the first half of a stereo sample // (left channel), add it to the new mono audio data. var inc int for i := 0; i < recLength; i++ { if i%stereoSampleBytes < stereoSampleBytes/2 { mono[inc] = stereoBuf.Data[i] inc++ } } return mono, nil } // gcd is used for calculating the greatest common divisor of two positive integers, a and b. // assumes given a and b are positive. func gcd(a, b int) int { if b != 0 { return gcd(b, a%b) } return a }