/* NAME lex.go AUTHOR Trek Hopton LICENSE This file is Copyright (C) 2019 the Australian Ocean Lab (AusOcean) It is free software: you can redistribute it and/or modify them under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License in gpl.txt. If not, see [GNU licenses](http://www.gnu.org/licenses). */ package codecutil import ( "errors" "fmt" "io" "math" "time" ) // ByteLexer is used to lex bytes using a buffer size which is configured upon construction. type ByteLexer struct { bufSize int } // NewByteLexer returns a pointer to a ByteLexer with the given buffer size. func NewByteLexer(s int) (*ByteLexer, error) { if s <= 0 { return nil, fmt.Errorf("invalid buffer size: %v", s) } return &ByteLexer{bufSize: s}, nil } // zeroTicks can be used to create an instant ticker. var zeroTicks chan time.Time func init() { zeroTicks = make(chan time.Time) close(zeroTicks) } // Lex reads l.bufSize bytes from src and writes them to dst every d seconds. func (l *ByteLexer) Lex(dst io.Writer, src io.Reader, d time.Duration) error { if d < 0 { return fmt.Errorf("invalid delay: %v", d) } var ticker *time.Ticker if d == 0 { ticker = &time.Ticker{C: zeroTicks} } else { ticker = time.NewTicker(d) defer ticker.Stop() } buf := make([]byte, l.bufSize) for { <-ticker.C off, err := src.Read(buf) // The only error that will stop the lexer is an EOF. if err == io.EOF { return err } else if err != nil { continue } _, err = dst.Write(buf[:off]) if err != nil { return err } } } // Noop reads media "frames" from src, queues and then writes to dst at intervals, // maintaining a steady number of frames stored in the queue. This ensures frames // are outputted at a consistent rate; useful if reads occur from src in blocks (a // side effect if src is connected to an input that receives packets containing // multiple frames at intervals e.g. MPEG-TS over HTTP). // Noop assumes that writing to the input connected to src is blocked until the // entire previous write is read, i.e. src is expected to be connected to // a pipe-like structure. func Noop(dst io.Writer, src io.Reader, d time.Duration) error { // Controller tuning constants. const ( target = 500 // Target channel size to maintain. coef = 0.01 // Proportional controller coefficient. minDelay = 1 // Minimum delay between writes (ms). maxDelay = 1000 // Maximum delay between writes (ms). defaultDelay = 40 * time.Millisecond // Default delay between writes, equivalent to ~25fps. ) // Ring buffer tuning. const ( ringCap = 1000 // Ring buffer capacity. ringElemSize = 250000 // Ring buffer element size i.e. max h264 frame size. ) if d < 0 { return fmt.Errorf("invalid delay: %v", d) } if d == 0 { d = defaultDelay } var ( delay = time.NewTicker(d) // Ticker based on delay between frames. errCh = make(chan error) // Used by the output routine to signal errors to the main loop. rb = newRingBuffer(ringElemSize, ringCap) // Use a ring buffer to reduce allocation and GC load. ) defer delay.Stop() // This routine is responsible for frame output. go func() { for { err := rb.writeTo(dst) if err != nil { errCh <- fmt.Errorf("could not write to dst: %w", err) } <-delay.C // Adjust delay using proportional controller. adj := coef * float64(target-rb.len()) adj = math.Max(math.Min(adj, minDelay), maxDelay) // Limit the delay. d += time.Millisecond * time.Duration(adj) delay.Reset(d) } }() // This loop is responsible for reading frames and checking any errors from // the output routine. for { err := rb.readFrom(src) if err != nil { return fmt.Errorf("could not read src: %w", err) } select { case err := <-errCh: return fmt.Errorf("error from output routine: %w", err) default: } } } // ringBuffer is a basic concurrency safe ring buffer. Concurrency safety is // achieved using a channel between read and write methods i.e. overwrite/dropping // behaviour is absent and blocking will occur. type ringBuffer struct { n int // Num. of elements. i int // Current index in underlying buffer. buf [][]byte // Underlying buffer. ch chan []byte // ch will act as our concurrency safe queue. } func newRingBuffer(sz, cap int) *ringBuffer { rb := &ringBuffer{ buf: make([][]byte, cap), n: cap, ch: make(chan []byte, cap), } for i := range rb.buf { rb.buf[i] = make([]byte, sz) } return rb } // readFrom gets the next []byte from the buffer and uses it to read from r. // This data is then stored in the buffer channel ready for writeTo to retreive. // readFrom will block if the buffer channel is filled, at least within the // timeout, otherwise an error is returned. func (b *ringBuffer) readFrom(r io.Reader) error { buf := b.buf[b.i] b.i++ if b.i == b.n { b.i = 0 } n, err := r.Read(buf) if err != nil { return err } const dur = 1 * time.Minute timeout := time.NewTimer(dur) select { case b.ch <- buf[:n]: case <-timeout.C: return errors.New("buffer chan send timeout") } return nil } // writeTo tries to get a []byte from the buffer channel within the timeout // and then writes to w if successful, otherwise an error is returned. func (b *ringBuffer) writeTo(w io.Writer) error { const dur = 1 * time.Minute timeout := time.NewTimer(dur) select { case p := <-b.ch: _, err := w.Write(p) if err != nil { return err } case <-timeout.C: return errors.New("buffer chan receive timeout") } return nil } func (b *ringBuffer) len() int { return len(b.ch) }